## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

The goal of this paper is to reconstruct spatially distributed dielectric constants from complex-valued scattered wave field by solving a 3D coefficient inverse problem for the Helmholtz equation at multi-frequencies. The data are generated by only a single direction of the incident plane wave. To solve this inverse problem, a globally convergent algorithm is analytically developed. We prove that this algorithm provides a good approximation for the exact coefficient without any *a priori* knowledge of any point in a small neighborhood of that coefficient. This is the main advantage of our method, compared with classical approaches using optimization schemes. Numerical results are presented for both computationally simulated data and experimental data. Potential applications of this problem are in detection and identification of explosive-like targets.

An inverse scattering problem for the 3-D Helmholtz equation is considered. Only the modulus of the complex valued scattered wave field is assumed to be measured and the phase is not measured. This problem naturally arises in the lensless quality control of fabricated nanostructures. Uniqueness theorem is proved.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]