A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers
Jun Lai Ming Li Peijun Li Wei Li
Inverse Problems & Imaging 2018, 12(3): 635-665 doi: 10.3934/ipi.2018027

Consider the scattering of a time-harmonic plane wave by heterogeneous media consisting of linear or nonlinear point scatterers and extended obstacles. A generalized Foldy–Lax formulation is developed to take fully into account of the multiple scattering by the complex media. A new imaging function is proposed and an FFT-based direct imaging method is developed for the inverse obstacle scattering problem, which is to reconstruct the shape of the extended obstacles. The novel idea is to utilize the nonlinear point scatterers to excite high harmonic generation so that enhanced imaging resolution can be achieved. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.

keywords: Foldy–Lax formulation point scatterers inverse obstacle scattering problem the Helmholtz equation boundary integral equation nonlinear optics
Near-field imaging of sound-soft obstacles in periodic waveguides
Ming Li Ruming Zhang
Inverse Problems & Imaging 2017, 11(6): 1091-1105 doi: 10.3934/ipi.2017050

In this paper, we introduce a direct method for the inverse scattering problems in a periodic waveguide from near-field scattered data. The direct scattering problem is to simulate the point sources scattered by a sound-soft obstacle embedded in the periodic waveguide, and the aim of the inverse problem is to reconstruct the obstacle from the near-field data measured on line segments outside the obstacle. Firstly, we will approximate the scattered field by some solutions of a series of Dirichlet exterior problems, and then the shape of the obstacle can be deduced directly from the Dirichlet boundary condition. We will also show that the approximation procedure is reasonable as the solutions of the Dirichlet exterior problems are dense in the set of scattered fields. Finally, we will give several examples to show that this method works well for different periodic waveguides.

keywords: Near-field imaging direct method periodic waveguide least square method limiting absorption principle
Robustly transitive singular sets via approach of an extended linear Poincaré flow
Ming Li Shaobo Gan Lan Wen
Discrete & Continuous Dynamical Systems - A 2005, 13(2): 239-269 doi: 10.3934/dcds.2005.13.239
Morales, Pacifico and Pujals proved recently that every robustly transitive singular set for a 3-dimensional flow must be partially hyperbolic. In this paper we generalize the result to higher dimensions. By definition, an isolated invariant set $\Lambda$ of a $C^1$ vector field $S$ is called robustly transitive if there exist an isolating neighborhood $U$ of $\Lambda$ in $M$ and a $C^1$ neighborhood $\mathcal U$ of $S$ in $\mathcal X^1(M)$ such that for every $X\in\mathcal U$, the maximal invariant set of $X$ in $U$ is non-trivially transitive. Such a set $\Lambda$ is called singular if it contains a singularity. The set $\Lambda$ is called strongly homogeneous of index $i$, if there exist an isolating neighborhood $U$ of $\Lambda$ in $M$ and a $C^1$ neighborhood $\mathcal U$ of $S$ in $\mathcal X^1(M)$ such that all periodic orbits of all $X\in\mathcal U$ contained in $U$ have the same index $i$. We prove in this paper that any robustly transitive singular set that is strongly homogeneous must be partially hyperbolic, as long as the indices of singularities and periodic orbits fit in certain way. As corollaries we obtain that every robust singular attractor (or repeller) that is strongly homogeneous must be partially hyperbolic and, if dim$M\le 4$, every robustly transitive singular set that is strongly homogeneous must be partially hyperbolic. The main novelty of the proofs in this paper is an extension of the usual linear Poincaré flow "to singularities".
keywords: star flow. Robustly transitive set extended linear poincaré flow partial hyperbolicity

Year of publication

Related Authors

Related Keywords

[Back to Top]