Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity
Mingwen Fei Huicheng Yin
We will focus on the existence and concentration of nodal solutions to the following critical nonlinear Schrödinger equations in $\Bbb R^2$ $$ -\epsilon^2\triangle u_{\epsilon}+V(x)u_{\epsilon}=K(x) |u_{\epsilon}|^{p-2}u_{\epsilon}e^{\alpha_{0}|u_{\epsilon}| ^{2}},\quad u_{\epsilon}\in H^1(\Bbb R^2), $$ where $p>2$, $\alpha_{0}>0$, $V(x), K(x)>0$, and $\epsilon>0$ is a small constant. For the positive potential $V(x)$ which decays at infinity like $(1+|x|)^{-\alpha}$ with $0 < \alpha \le 2$, we will show that a nodal solution with one positive and one negative peaks exists, and concentrates around local minimum points of the related ground energy function $G(\xi)$ of the Schrödinger equation $ -\triangle u+V(\xi)u=K(\xi) |u|^{p-2}ue^{\alpha_{0}|u|^{2}}$.
keywords: multi-peak critical exponent concentration-compactness. Nonlinear Schrödinger equation nodal solution

Year of publication

Related Authors

Related Keywords

[Back to Top]