## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

For more information please click the "Full Text" above.

This paper deals with analysis and numerical simulations of a one-dimensional two-species hyperbolic aggregation model. This model is formed by a system of transport equations with nonlocal velocities, which describes the aggregate dynamics of a two-species population in interaction appearing for instance in bacterial chemotaxis. Blow-up of classical solutions occurs in finite time. This raises the question to define measure-valued solutions for this system. To this aim, we use the duality method developed for transport equations with discontinuous velocity to prove the existence and uniqueness of measure-valued solutions. The proof relies on a stability result. In addition, this approach allows to study the hyperbolic limit of a kinetic chemotaxis model. Moreover, we propose a finite volume numerical scheme whose convergence towards measure-valued solutions is proved. It allows for numerical simulations capturing the behaviour after blow up. Finally, numerical simulations illustrate the complex dynamics of aggregates until the formation of a single aggregate: after blow-up of classical solutions, aggregates of different species are synchronising or nonsynchronising when collide, that is move together or separately, depending on the parameters of the model and masses of species involved.

Artificial releases of *Wolbachia*-infected *Aedes* mosquitoes have been under study in the past yearsfor fighting vector-borne diseases such as dengue, chikungunya and zika.Several strains of this bacterium cause cytoplasmic incompatibility (CI) and can also affect their host's fecundity or lifespan, while highly reducing vector competence for the main arboviruses.

We consider and answer the following questions: 1) what should be the initial condition (*i.e.* size of the initial mosquito population) to have invasion with one mosquito release source? We note that it is hard to have an invasion in such case. 2) How many release points does one need to have sufficiently high probability of invasion? 3) What happens if one accounts for uncertainty in the release protocol (*e.g.* unequal spacing among release points)?

We build a framework based on existing reaction-diffusion models for the uncertainty quantification in this context,obtain both theoretical and numerical lower bounds for the probability of release successand give new quantitative results on the one dimensional case.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]