Journals
- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
-
AIMS Mathematics
-
Conference Publications
-
Electronic Research Announcements
-
Mathematics in Engineering
Open Access Journals
CPAA
We consider the Maxwell-Klein-Gordon equation in 2D in the Coulomb gauge. We establish local well-posedness for $s=\frac 14+\epsilon$ for data for the spatial part of the gauge potentials and for $s=\frac 58+\epsilon$ for the solution $\phi$ of the gauged Klein-Gordon equation. The main tool for handling the wave equations is the product estimate established by D'Ancona, Foschi, and Selberg. Due to low regularity, we are unable to use the conventional approaches to handle the elliptic variable $A_0$, so we provide a new approach.
keywords:
low regularity.
,
Coulomb gauge
,
null forms
,
local well-posedness
,
Maxwell-Klein-Gordon
Year of publication
Related Authors
Related Keywords
[Back to Top]