Standing wave concentrating on compact manifolds for nonlinear Schrödinger equations
Jaeyoung Byeon Ohsang Kwon Yoshihito Oshita
Communications on Pure & Applied Analysis 2015, 14(3): 825-842 doi: 10.3934/cpaa.2015.14.825
For $k =1,\cdots,K,$ let $M_k$ be a $q_k$-dimensional smooth compact framed manifold in $R^N$ with $q_k \in \{1,\cdots,N-1\} $. We consider the equation $-\varepsilon^2\Delta u + V(x)u - u^p = 0$ in $R^N$ where for each $k \in \{1,\cdots,K\}$ and some $m_k > 0,$ $V(x)=|\textrm{dist}(x,M_k)|^{m_k}+O(|\textrm{dist}(x,M_k)|^{m_k+1})$ as $\textrm{dist}(x,M_k) \to 0 $. For a sequence of $\varepsilon$ converging to zero, we will find a positive solution $u_{\varepsilon}$ of the equation which concentrates on $M_1\cup \dots \cup M_K$.
keywords: Concentration phenomena nondegeneracy nonlinear Schrödinger equation. infinite dimensional reduction

Year of publication

Related Authors

Related Keywords

[Back to Top]