## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS

We propose a discretization of the optimality principle in dynamic programming based on radial basis functions and Shepard's moving least squares approximation method. We prove convergence of the value iteration scheme, derive a statement about the stability region of the closed loop system using the corresponding approximate optimal feedback law and present several numerical experiments.

JCD

We perform a numerical approximation of coherent sets in finite-dimensional smooth dynamical systems by computing singular vectors of the transfer operator for a stochastically perturbed flow. This operator is obtained by solution of a discretized Fokker-Planck equation. For numerical implementation, we employ spectral collocation methods and an exponential time differentiation scheme. We experimentally compare our approach with the more classical method by Ulam that is based on discretization of the transfer operator of the unperturbed flow.

JCD

We consider nonlinear control systems for which only quantized and event-triggered state information is available and which are subject to random delays and losses in the transmission of the state to the controller. We present an optimization based approach for computing globally stabilizing controllers for such systems. Our method is based on recently developed set oriented techniques for transforming the problem into a shortest path problem on a weighted hypergraph. We show how to extend this approach to a system subject to a stochastic parameter and propose a corresponding model for dealing with transmission delays.

keywords:
global feedback
,
event system.
,
quantized
system
,
Dynamic programming
,
set oriented numerics

DCDS

We present a technique for the rigorous computation of periodic
orbits in certain ordinary differential equations. The method
combines set oriented numerical techniques for the computation of
invariant sets in dynamical systems with topological index
arguments. It not only allows for the proof of existence of
periodic orbits but also for a precise (and rigorous) approximation
of these. As an example we compute a periodic orbit for a
differential equation introduced in [2].

JCD

This issue comprises manuscripts collected on the occasion of the 4th International Workshop on Set-Oriented Numerics which took place at the Technische Universität Dresden in September 2013. The contributions cover a broad spectrum of different subjects in computational dynamics ranging from purely discrete problems on graphs to computer assisted proofs of bifurcations in dissipative PDEs. In many cases, ideas related to set-oriented paradigms turn out to be useful in the computations, for example by quantizing the state space, or by using interval arithmetic to perform rigorous computations.

For more information please click the “Full Text” above.

For more information please click the “Full Text” above.

keywords:

NHM

For high dimensional particle systems, governed by smooth nonlinearities depending on mutual distances between particles, one can construct low-dimensional representations of the dynamical system, which allow the learning of nearly optimal control strategies in high dimension with overwhelming confidence. In this paper we present an instance of this general statement tailored to the sparse control of models of consensus emergence in high dimension, projected to lower dimensions by means of random linear maps. We show that one can steer, nearly optimally and with high probability, a high-dimensional alignment model to consensus by acting at each switching time on one agent of the system only, with a control rule chosen essentially exclusively according to information gathered from a randomly drawn low-dimensional representation of the control system.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]