## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

*Discrete and Continuous Dynamical Systems -- Series S*is devoted to

*Traffic Modeling and Management*. This subject dramatically developed in recent years. On one hand, the successes of the analytical theory of conservation laws have provided new tools to traffic researchers while, on the other hand, the requirements coming from the applications have grown dramatically. Remarkably, two of the papers that opened the way to this decades long development date the same year. In 1995

*``The Unique Limit of the Glimm Scheme''*by A. Bressan (Archive for Rational Mechanics and Analysis, 130, 3, 205--230) gave a basis for several well posedness results for 1D systems of conservation laws. In the same year,

*``Requiem for High-Order Fluid Approximations of Traffic Flow''*by C. Daganzo (Transportation Research Part B: Methodological, 29B, 4, 277--287) posed serious criticisms to models studied at that time and started to fix minimal requirements for a traffic model to be seriously considered.

For more information please click the “Full Text” above.

We introduce a second order model for traffic flow with moving bottlenecks. The model consists of the × 2$ Aw-Rascle-Zhang system with a point-wise flow constraint whose trajectory is governed by an ordinary differential equation. We define two Riemann solvers, characterize the corresponding invariant domains and propose numerical strategies, which are effective in capturing the non-classical shocks due to the constraint activation.

In this paper, we illustrate how second order traffic flow models, in our case the Aw-Rascle equations, can be used to reproduce empirical observations such as the capacity drop at merges and solve related optimal control problems. To this aim, we propose a model for on-ramp junctions and derive suitable coupling conditions. These are associated to the first order Godunov scheme to numerically study the well-known capacity drop effect, where the outflow of the system is significantly below the expected maximum. Control issues such as speed and ramp meter control are also addressed in a first-discretize-then-optimize framework.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]