## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

$-L u=\lambda h(x)|x|^{\delta}(u_{+})^q-|x|^{\gamma}(u_{-})^p, \quad $ in $\Omega$,

$u_{\pm}$ ≠0, $\quad u\in E,$ $\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad$
(*P*)

where $\Omega$ is either a whole space $\mathbb R^N$ or a bounded smooth domain, $Lu =:$ div$(|x|^{\alpha}|\nabla u|^{m-2}\nabla u), $ $\lambda >0, \quad0 < q < m-1 < p \leq m$*$-1,$ $\alpha, $ $\delta $ and $\gamma $ are real numbers, $ N> m-\alpha, $ $m$*$=\frac{(\gamma+N)m}{(\alpha+N-m)}$, $h:\Omega \rightarrow \mathbb R$ is a positive continuous function, $u_{\pm}=\max \{\pm u,0\}$ and $E$ is a Banach space that will be defined later on. We will show that (P) has a solution that changes sign in several situations. The proof of the main results are done by using variational methods applied to the energy functional associated to $(P)$.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]