## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

PROC

The authors study a type of nonlinear fractional boundary value problem with nonlocal boundary conditions. An associated Green's function is constructed. Then a criterion for the existence of at least one positive solution is obtained by using fixed point theory on cones.

MCRF

In this paper, a vector-host epidemic model with control measures is considered to assess the impact of control measures on the prevalence of the vector-host diseases. We incorporated mosquito-reduction strategy and host medical treatment into the model. For the basic vector-host model, we provide sufficient conditions for the local stability of the disease free equilibrium (DFE) and the sensitivity analysis for the reproduction number with respect to the model parameters. Using the optimal control theory, the optimal levels of the two controls are characterized, and then the existence and uniqueness for the optimal control pair are established. Numerical simulations are further conducted to confirm and extend the analytical results. Numerical results suggest that optimal multi-control strategy is a more beneficial choice in fighting the outbreak of vector-host diseases. For the vector-host epidemics, vector control measures should be taken prior to other measures.

PROC

We study the nonlinear boundary value problem consisting of the
equation
$y^{''}+ w(t)f(y)=0$ on $[a,b]$
and a multi-point boundary condition.
By relating it to the eigenvalues of a
linear Sturm-Liouville problem with a two-point separated boundary
condition, we obtain results on the
existence and nonexistence of nodal solutions of this problem. We also
discuss the
changes of the existence of different types of nodal solutions as the
problem changes.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]