Mathematical modeling on helper T cells in a tumor immune system
Yueping Dong Rinko Miyazaki Yasuhiro Takeuchi
Activation of CD$8^+$ cytotoxic T lymphocytes (CTLs) is naturally regarded as a major antitumor mechanism of the immune system. In contrast, CD$4^+$ T cells are commonly classified as helper T cells (HTCs) on the basis of their roles in providing help to the generation and maintenance of effective CD$8^+$ cytotoxic and memory T cells. In order to get a better insight on the role of HTCs in a tumor immune system, we incorporate the third population of HTCs into a previous two dimensional ordinary differential equations (ODEs) model. Further we introduce the adoptive cellular immunotherapy (ACI) as the treatment to boost the immune system to fight against tumors. Compared tumor cells (TCs) and effector cells (ECs), the recruitment of HTCs changes the dynamics of the system substantially, by the effects through particular parameters, i.e., the activation rate of ECs by HTCs, $p$ (scaled as $\rho$), and the HTCs stimulation rate by the presence of identified tumor antigens, $k_2$ (scaled as $\omega_2$). We describe the stability regions of the interior equilibria $E^*$ (no treatment case) and $E^+$ (treatment case) in the scaled $(\rho,\omega_2)$ parameter space respectively. Both $\rho$ and $\omega_2$ can destabilize $E^*$ and $E^+$ and cause Hopf bifurcations. Our results show that HTCs might play a crucial role in the long term periodic oscillation behaviors of tumor immune system interactions. They also show that TCs may be eradicated from the patient's body under the ACI treatment.
keywords: helper T cells periodic solutions Hopf bifurcation. Tumor immune system
Stability conditions for a class of delay differential equations in single species population dynamics
Gang Huang Yasuhiro Takeuchi Rinko Miyazaki
We consider a class of nonlinear delay differential equations,which describes single species population growth with stage structure. By constructing appropriate Lyapunov functionals, the global asymptotic stability criteria, which are independent of delay, are established. Much sharper stability conditions than known results are provided. Applications of the results to some population models show the effectiveness of the methods described in the paper.
keywords: single species Lyapunov functionals global stability. Delay differential equation

Year of publication

Related Authors

Related Keywords

[Back to Top]