## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS

In this article, maximum principles are derived for a suitably modified
form of the equation of temperature for the primitive equations of the atmosphere;
we consider both the limited domain case in Cartesian coordinates and the
ow of
the whole atmosphere in spherical coordinates.

DCDS

The goal of this article is to study the boundary layer of the heat equation with thermal diffusivity in a general (curved), bounded and smooth domain in $\mathbb{R}^{d}$, $d \geq 2$, when the diffusivity parameter ε is small. Using a curvilinear coordinate system fitting the boundary, an asymptotic expansion, with respect to ε, of the heat solution is obtained at all orders.
It appears that unlike the case of a straight boundary, because of the curvature of the boundary, two correctors in powers of ε and ε

^{1/2}must be introduced at each order. The convergence results, between the exact and approximate solutions, seem optimal. Beside the intrinsic interest of the results presented in the article, we believe that some of the methods introduced here should be useful to study boundary layers for other problems involving curved boundaries.## Year of publication

## Related Authors

## Related Keywords

[Back to Top]