## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

*gondii*(T.

*gondii*) is a protozoan parasite that infects a wide range of intermediate hosts, including all mammals and birds. Up to 20% of the human population in the US and 30% in the world are chronically infected. This paper presents a mathematical model to describe intra-host dynamics of

*T. gondii*infection. The model considers the invasion process, egress kinetics, interconversion between fast-replicating tachyzoite stage and slowly replicating bradyzoite stage, as well as the host's immune response. Analytical and numerical studies of the model can help to understand the influences of various parameters to the transient and steady-state dynamics of the disease infection.

For more information please click the “Full Text” above.

For more information please click the “Full Text” above.

We propose a new mathematical model studying control strategies of malaria transmission. The control is a combination of human and transmission-blocking vaccines and vector control (larvacide). When the disease induced death rate is large enough, we show the existence of a backward bifurcation analytically if vaccination control is not used, and numerically if vaccination is used. The basic reproduction number is a decreasing function of the vaccination controls as well as the vector control parameters, which means that any effort on these controls will reduce the burden of the disease. Numerical simulation suggests that the combination of the vaccinations and vector control may help to eradicate the disease. We investigate optimal strategies using the vaccinations and vector controls to gain qualitative understanding on how the combinations of these controls should be used to reduce disease prevalence in malaria endemic setting. Our results show that the combination of the two vaccination controls integrated with vector control has the highest impact on reducing the number of infected humans and mosquitoes.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]