## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

We consider a one dimensional infinite chain of harmonic oscillators whose dynamics is weakly perturbed by a stochastic term conserving energy and momentum and whose evolution is governed by an Ornstein-Uhlenbeck process. We prove the kinetic limit for the Wigner functions corresponding to the chain. This result generalizes the results of [

We consider an unpinned chain of harmonic oscillators with periodic boundary conditions, whose dynamics is perturbed by a random flip of the sign of the velocities. The dynamics conserves the total volume (or elongation) and the total energy of the system. We prove that in a diffusive space-time scaling limit the profiles corresponding to the two conserved quantities converge to the solution of a diffusive system of differential equations. While the elongation follows a simple autonomous linear diffusive equation, the evolution of the energy depends on the gradient of the square of the elongation.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]