## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

DCDS

Inducing schemes provide a means of using symbolic dynamics to study equilibrium states of non-uniformly hyperbolic maps, but necessitate a solution to the liftability problem. One approach, due to Pesin and Senti, places conditions on the induced potential under which a unique equilibrium state exists among liftable measures, and then solves the liftability problem separately. Another approach, due to Bruin and Todd, places conditions on the original potential under which both problems may be solved simultaneously. These conditions include a bounded range condition, first introduced by Hofbauer and Keller. We compare these two sets of conditions and show that for many inducing schemes of interest, the conditions from the second approach are strictly stronger than the conditions from the first. We also show that the bounded range condition can be used to obtain Pesin and Senti's conditions for any inducing scheme with sufficiently slow growth of basic elements.

keywords:
Thermodynamic formalism
,
equilibrium states
,
inducing schemes
,
multimodal maps.
,
unimodal maps

ERA-MS

We show that under quite general conditions, various multifractal spectra may be obtained as Legendre transforms of functions $T$: $ \RR\to \RR$ arising in the thermodynamic formalism. We impose minimal requirements on the maps we consider, and obtain partial results for any continuous map $f$ on a compact metric space. In order to obtain complete results, the primary hypothesis we require is that the functions $T$ be continuously differentiable. This makes rigorous the general paradigm of reducing questions regarding the multifractal formalism to questions regarding the thermodynamic formalism. These results hold for a broad class of measurable potentials, which includes (but is not limited to) continuous functions. Applications include most previously known results, as well as some new ones.

DCDS

This is a survey-type article whose goal is to review some recent developments in studying the genericity problem for non-uniformly hyperbolic dynamical systems with discrete time on compact smooth manifolds. We discuss both cases of systems which are conservative (preserve the Riemannian volume) and dissipative (possess hyperbolic attractors). We also consider the problem of coexistence of hyperbolic and regular behaviour.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]