A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images
Yunmei Chen Weihong Guo Qingguo Zeng Yijun Liu
Inverse Problems & Imaging 2008, 2(2): 205-224 doi: 10.3934/ipi.2008.2.205
We present a new variational framework for simultaneous smoothing and estimation of apparent diffusion coefficient (ADC) profiles from High Angular Resolution Diffusion-weighted MRI. The model approximates the ADC profiles at each voxel by a 4th order spherical harmonic series (SHS). The coefficients in SHS are obtained by solving a constrained minimization problem. The smoothing with feature preserved is achieved by minimizing a variable exponent, linear growth functional, and the data constraint is determined by the original Stejskal-Tanner equation. The antipodal symmetry and positiveness of the ADC are accommodated in the model. We use these coefficients and variance of the ADC profiles from its mean to classify the diffusion in each voxel as isotropic, anisotropic with single fiber orientation, or two fiber orientations. The proposed model has been applied to both simulated data and HARD MRI human brain data . The experiments demonstrated the effectiveness of our method in estimation and smoothing of ADC profiles and in enhancement of diffusion anisotropy. Further characterization of non-Gaussian diffusion based on the proposed model showed a consistency between our results and known neuroanatomy.
keywords: Reconstruction smoothing spherical harmonic series. diffusion weighted images
A geometry guided image denoising scheme
Weihong Guo Jing Qin
Inverse Problems & Imaging 2013, 7(2): 499-521 doi: 10.3934/ipi.2013.7.499
During image denoising, it is often difficult to balance between the removal of noise and the preservation of contrast and fine features, especially when the noise is excessive. We propose to efficiently balance the two using segmentation and more general geometry extraction transforms. Explained in the nonlocal-means (NL-means) framework, we introduce a mutual position function to ensure the averaging is only taken over pixels in the same segmentation phase, and provide selection schemes for convolution kernel and weight function to further improve the performance. To address unreliable segmentation due to more excessive noise, we use a feature extraction transform that is more general than segmentation and less sensitive to noise. Unlike most denoising approaches that only work for one type of noise and/or involve heuristic parameter tuning, the proposed method comes with an automatic parameter selection scheme, and can be easily adapted for various types of noise, ranging from Gaussian, Poisson, Rician to ultrasound noise. Comparison with the original NL-means as well as ROF, BM3D, and K-SVD on various simulated data, MRI and SEM images, indicates potentials of the proposed method.
keywords: segmentation nonlocal means. Image denoising

Year of publication

Related Authors

Related Keywords

[Back to Top]