Dispersive estimates for matrix Schrödinger operators in dimension two
M. Burak Erdoǧan William R. Green
We consider the non-selfadjoint operator \[ H = \left[\begin{array}{cc} -\Delta + \mu-V_1 & -V_2\\ V_2 & \Delta - \mu + V_1 \end{array} \right] \] where $\mu>0$ and $V_1,V_2$ are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave. Under natural spectral assumptions we obtain $L^1(\mathbb{R}^2)\times L^1(\mathbb{R}^2)\to L^\infty(\mathbb{R}^2)\times L^\infty(\mathbb{R}^2)$ dispersive decay estimates for the evolution $e^{it H}P_{ac}$. We also obtain the following weighted estimate $$ \|w^{-1} e^{it\mathcal H}P_{ac}f\|_{L^\infty(\mathbb R^2)\times L^\infty(\mathbb R^2)} ≲ \frac{1}{|t|\log^2(|t|)} \|w f\|_{L^1(\mathbb R^2)\times L^1(\mathbb R^2)},\,\,\,\,\,\,\,\, |t| >2, $$with $w(x)=\log^2(2+|x|)$.
keywords: dispersive estimates asymptotic stability. solitons weighted estimates Matrix Schrödinger operators

Year of publication

Related Authors

Related Keywords

[Back to Top]