## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- Electronic Research Announcements
- Conference Publications
- AIMS Mathematics

DCDS

In this paper we mainly study the Cauchy problem for a generalized Camassa-Holm equation. First, by using the Littlewood-Paley decomposition and transport equations theory, we establish the local well-posedness for the Cauchy problem of the equation in Besov spaces. Then we give a blow-up criterion for the Cauchy problem of the equation. we present a blow-up result and the exact blow-up rate of strong solutions to the equation by making use of the conservation law and the obtained blow-up criterion. Finally, we verify that the system possesses peakon solutions.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]