# American Institute of Mathematical Sciences

## Journals

CPAA
Communications on Pure & Applied Analysis 2011, 10(2): 527-540 doi: 10.3934/cpaa.2011.10.527
In this paper, we consider the following semilinear elliptic equations with critical Hardy-Sobolev exponent:

$-\Delta u+\lambda\frac{u}{|x-a|^2}-\gamma\frac{u}{|x|^2} =\frac{Q(x)}{|x|^s}|u|^{2^*(s)-2}u+g(x,u), u>0$ in $\Omega,$

$\frac{\partial u}{\partial\nu}+\alpha(x)u=0$ on $\partial\Omega.$

By variational method, the existence of positive solution is obtained.

keywords:
CPAA
Communications on Pure & Applied Analysis 2013, 12(5): 1943-1957 doi: 10.3934/cpaa.2013.12.1943
In this paper, we deal with the following problem: \begin{eqnarray*} -\Delta u-\lambda |y|^{-2}u=|y|^{-s}u^{2^{*}(s)-1}+u^{2^{*}-1}\ \ \ in \ \ R^N , y\neq 0\\ u\geq 0 \end{eqnarray*} where $u(x)=u(y,z): R^m\times R^{N-m}\longrightarrow R$, $N\geq 4$, $2 < m < N$, $\lambda < (\frac{m-2}{2})^2$ and $0 < s < 2$, $2^*(s)=\frac{2(N-s)}{N-2}$, $2^*=\frac{2N}{N-2}$. Using the Variational method, we proved the existence of a ground state solution for the case $0 < \lambda < (\frac{m-2}{2})^2$ and the existence of a cylindrical weak solution under the case $\lambda<0$.
keywords: