## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

CPAA

We study a one-dimensional transport equation with non-local velocity
and supercritial dissipation. Using the methods of modulus of continuity
introduced in [1] and fractional Laplacian representaiton introduced in [2], we
prove its global well-posedness for small periodic initial data in Holder spaces.

CPAA

We consider a free boundary problem for the axially symmetric incompressible ideal magnetohydrodynamic equations that describe the motion of the plasma in vacuum. Both the plasma magnetic field and vacuum magnetic field are tangent along the plasma-vacuum interface. Moreover, the vacuum magnetic field is composed in a non-simply connected domain and hence is non-trivial. Under the non-collinearity condition for the plasma and vacuum magnetic fields, we prove the local well-posedness of the problem in Sobolev spaces.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]