Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$
Yanqin Fang Jihui Zhang
Let $n, m$ be a positive integer and let $R_+^n$ be the $n$-dimensional upper half Euclidean space. In this paper, we study the following integral equation \begin{eqnarray} u(x)=\int_{R_+^n}G(x,y)u^pdy, \end{eqnarray} where \begin{eqnarray*} G(x,y)=\frac{C_n}{|x-y|^{n-2m}}\int_0^{\frac{4x_n y_n}{|x-y|^2}}\frac{z^{m-1}}{(z+1)^{n/2}}dz, \end{eqnarray*} $C_{n}$ is a positive constant, $0 <2m 1$. Using the method of moving planes in integral forms, we show that equation (1) has no positive solution.
keywords: monotonicity. moving planes in integral forms Nonexistence
Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system
Yanqin Fang Jihui Zhang
In this paper, we study the following system

$-\epsilon^2\Delta v+V(x)v+\psi(x)v=v^p, \quad x\in R^3,$

$-\Delta\psi=\frac{1}{\epsilon}v^2,\quad \lim_{|x|\rightarrow\infty}\psi(x)=0,\quad x\in R^3,$

where $\epsilon>0$, $p\in (3,5)$, $V$ is positive potential. We relate the number of solutions with topology of the set where $V$ attain their minimum value. By applying Ljusternik-Schnirelmann theory, we prove the multiplicity of solutions.

keywords: multiple solutions. Ljusternik-Schnirelmann theory Schrödinger-Maxwell
Regularity and classification of solutions to static Hartree equations involving fractional Laplacians
Wei Dai Jiahui Huang Yu Qin Bo Wang Yanqin Fang

In this paper, we are concerned with the fractional order equations (1) with Hartree type $ \dot{H}^{\frac{α}{2}} $-critical nonlinearity and its equivalent integral equations (3). We first prove a regularity result which indicates that weak solutions are smooth (Theorem 1.2). Then, by applying the method of moving planes in integral forms, we prove that positive solutions $ u $ to (1) and (3) are radially symmetric about some point $ x_{0}∈\mathbb{R}^{d} $ and derive the explicit forms for $ u $ (Theorem 1.3 and Corollary 1). As a consequence, we also derive the best constants and extremal functions in the corresponding Hardy-Littlewood-Sobolev inequalities (Corollary 2).

keywords: Fractional Laplacians positive solutions radial symmetry uniqueness regularity Hartree type nonlinearity methods of moving planes in integral forms
Regularity and nonexistence of solutions for a system involving the fractional Laplacian
De Tang Yanqin Fang
We consider a system involving the fractional Laplacian \begin{eqnarray} \left\{ \begin{array}{ll} (-\Delta)^{\alpha_{1}/2}u=u^{p_{1}}v^{q_{1}} & \mbox{in}\ \mathbb{R}^N_+,\\ (-\Delta)^{\alpha_{2}/2}v=u^{p_{2}}v^{q_{2}} &\mbox{in}\ \mathbb{R}^N_+,\\ u=v=0,&\mbox{in}\ \mathbb{R}^N\backslash\mathbb{R}^N_+, \end{array} \right. \end{eqnarray} where $\alpha_{i}\in (0,2)$, $p_{i},q_{i}>0$, $i=1,2$. Based on the uniqueness of $\alpha$-harmonic function [9] on half space, the equivalence between (1) and integral equations \begin{eqnarray} \left\{ \begin{array}{ll} u(x)=C_{1}x_{N}^{\frac{\alpha_{1}}{2}}+\displaystyle\int_{\mathbb{R}_{+}^{N}}G^{1}_{\infty}(x,y)u^{p_{1}}(y)v^{q_{1}}(y)dy,\\ v(x)=C_{2}x_{N}^{\frac{\alpha_{2}}{2}}+\displaystyle\int_{\mathbb{R}_{+}^{N}}G^{2}_{\infty}(x,y)u^{p_{2}}(y)v^{q_{2}}(y)dy. \end{array} \right. \end{eqnarray} are derived. Based on this result we deal with integral equations (2) instead of (1) and obtain the regularity. Especially, by the method of moving planes in integral forms which is established by Chen-Li-Ou [12], we obtain the nonexistence of positive solutions of integral equations (2) under only local integrability assumptions.
keywords: Kelvin transform. moving planes in integral forms nonexistence integral equations equivalence Fractional laplacians
Method of sub-super solutions for fractional elliptic equations
Yanqin Fang De Tang
By applying the method of sub-super solutions, we obtain the existence of weak solutions to fractional Laplacian
$\left\{ \begin{array}{*{35}{l}} {{(-\Delta )}^{s}}u=f(x,u),&\text{in}\ \Omega , \\ u=0,&\text{in}\ {{\mathbb{R}}^{N}}\backslash \Omega , \\\end{array} \right.$
$f:\Omega \text{ }\!\!\times\!\!\text{ }\mathbb{R}\to \mathbb{R}$
is a Caratheódory function.
be a Radon measure. Based on the existence result in (1), we derive the existence of weak solutions for the semilinear fractional elliptic equation with measure data
$ \left\{ \begin{array}{*{35}{l}} {{(-\Delta )}^{s}}u=f(x,u)+\nu ,&\text{in}\ \Omega , \\ u=0,&\text{in}\ {{\mathbb{R}}^{N}}\backslash \Omega , \\\end{array} \right. $
Some results in[7] are extended.
In addition, we generalize some results to systems of fractional Laplacian equations by constructing subsolutions and supersolutions.
keywords: Fractional Laplacian Radon measure Caratheódory function subsolution supersolution

Year of publication

Related Authors

Related Keywords

[Back to Top]