IPI
On the range of the attenuated magnetic ray transform for connections and Higgs fields
Gareth Ainsworth Yernat M. Assylbekov
For a two-dimensional simple magnetic system, we study the attenuated magnetic ray transform $I_{A,\Phi}$, with attenuation given by a unitary connection $A$ and a skew-Hermitian Higgs field $\Phi$. We give a description for the range of $I_{A,\Phi}$ acting on $\mathbb{C}^n$-valued tensor fields.
keywords: inverse problems Ray transforms tensor tomography magnetic geodesics.
IPI
Boundary and scattering rigidity problems in the presence of a magnetic field and a potential
Yernat M. Assylbekov Hanming Zhou
In this paper, we consider a compact Riemannian manifold with boundary, endowed with a magnetic potential $\alpha$ and a potential $U$. For brevity, this type of systems are called $\mathcal{MP}$-systems. On simple $\mathcal{MP}$-systems, we consider both the boundary rigidity problem and scattering rigidity problem. Unlike the cases of geodesic or magnetic systems, knowing boundary action functions or scattering relations for only one energy level is insufficient to uniquely determine a simple $\mathcal{MP}$-system up to natural obstructions, even under the assumption that the boundary restriction of the system is given, and we provide some counterexamples. By reducing an $\mathcal{MP}$-system to the corresponding magnetic system and applying the results of [6] on simple magnetic systems, we prove rigidity results for metrics in a given conformal class, for simple real analytic $\mathcal{MP}$-systems and for simple two-dimensional $\mathcal{MP}$-systems.
keywords: magnetic field action. gauge invariance Boundary rigidity potential

Year of publication

Related Authors

Related Keywords

[Back to Top]