An uncertain programming model for single machine scheduling problem with batch delivery
Jiayu Shen Yuanguo Zhu

A single machine scheduling problem with batch delivery is studied in this paper. The objective is to minimize the total cost which comprises earliness penalties, tardiness penalties, holding and transportation costs. An integer programming model is proposed and two dominance properties are obtained. However, sometimes due to the lack of historical data, the worker evaluates the processing time of a job according to his past experience. A pessimistic value model of the single machine scheduling problem with batch delivery under an uncertain environment is presented. Since the objective function is non-monotonic with respect to uncertain variables, a hybrid algorithm based on uncertain simulation and a g#enetic algorithm (GA) is designed to solve the model. In addition, two dominance properties under the uncertain environment are also obtained. Finally, computational experiments are presented to illustrate the modeling idea and the effectiveness of the algorithm.

keywords: Single machine scheduling batch delivery uncertain environment genetic algorithm uncertain simulation
A linear-quadratic control problem of uncertain discrete-time switched systems
Hongyan Yan Yun Sun Yuanguo Zhu

This paper studies a linear-quadratic control problem for discrete-time switched systems with subsystems perturbed by uncertainty. Analytical expressions are derived for both the optimal objective function and the optimal switching strategy. A two-step pruning scheme is developed to efficiently solve such problem. The performance of this method is shown by two examples.

keywords: Linear-quadratic model uncertain switched system optimal control local pruning scheme global pruning scheme
Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems
Yuefen Chen Yuanguo Zhu

Uncertainty theory is a branch of axiomatic mathematics that deals with human uncertainty. Based on uncertainty theory, this paper discusses linear quadratic (LQ) optimal control with process state inequality constraints for discrete-time uncertain systems, where the weighting matrices in the cost function are assumed to be indefinite. By means of the maximum principle with mixed inequality constraints, we present a necessary condition for the existence of optimal state feedback control that involves a constrained difference equation. Moreover, the existence of a solution to the constrained difference equation is equivalent to the solvability of the indefinite LQ problem. Furthermore, the well-posedness of the indefinite LQ problem is proved. Finally, an example is provided to demonstrate the effectiveness of our theoretical results.

keywords: Indefinite LQ control process state inequality constraints discrete-time uncertain systems constrained difference equation

Year of publication

Related Authors

Related Keywords

[Back to Top]