# American Institute of Mathematical Sciences

## Journals

DCDS-S
Discrete & Continuous Dynamical Systems - S 2017, 10(5): 1051-1062 doi: 10.3934/dcdss.2017056
In this paper, we study a coupled two-cell Schnakenberg model with homogenous Neumann boundary condition, i.e.,
 $\left\{ \begin{gathered} -d_1Δ u=a-u+u^2v+c(w-u),&\text{ in } Ω, \\-d_2Δ v=b-u^2v,&\text{ in } Ω , \\-d_1Δ w=a-w+w^2z+c(u-w),&\text{ in } Ω, \\-d_2Δ z=b-w^2z,&\text{ in } Ω, \\\dfrac{\partial u}{\partial ν}=\dfrac{\partial v}{\partial ν}=\dfrac{\partial w}{\partial ν}=\dfrac{\partial z}{\partial ν}=0, &\text{ on } \partialΩ.\end{gathered} \right.$
We give a priori estimate to the positive solution. Meanwhile, we obtain the non-existence and existence of positive non-constant solution as parameters
 $d_1, d_2, a$
and b changes.
keywords:
CPAA
Communications on Pure & Applied Analysis 2018, 17(1): 67-84 doi: 10.3934/cpaa.2018005

In this paper, a spatiotemporal diffusive predator-prey system with Holling type-Ⅲ is considered. By using a Lyapunov-like function, it is proved that the unique local solution of the system must be a a global one if the interaction intensity is small enough. A comparison theorem is used to show that the system can be extinction or stability in mean square under some additional conditions. Finally, an unique invariant measure for the system is obtained.

keywords:
CPAA
Communications on Pure & Applied Analysis 2013, 12(6): 2923-2933 doi: 10.3934/cpaa.2013.12.2923
In this paper, we consider an abstract equation $F(\lambda,u)=0$ with one parameter $\lambda$, where $F\in C^p(\mathbb{R} \times X, Y)$, $p\geq 2$, is a nonlinear differentiable mapping, and $X,Y$ are Banach spaces. We apply Lyapunov-Schmidt procedure and Morse Lemma to obtain a "double" saddle-node bifurcation theorem with a two-dimensional kernel. Applications include a perturbed problem and a semilinear elliptic equation.
keywords: