## Journals

- Advances in Mathematics of Communications
- Big Data & Information Analytics
- Communications on Pure & Applied Analysis
- Discrete & Continuous Dynamical Systems - A
- Discrete & Continuous Dynamical Systems - B
- Discrete & Continuous Dynamical Systems - S
- Evolution Equations & Control Theory
- Foundations of Data Science
- Inverse Problems & Imaging
- Journal of Computational Dynamics
- Journal of Dynamics & Games
- Journal of Geometric Mechanics
- Journal of Industrial & Management Optimization
- Journal of Modern Dynamics
- Kinetic & Related Models
- Mathematical Biosciences & Engineering
- Mathematical Control & Related Fields
- Mathematical Foundations of Computing
- Networks & Heterogeneous Media
- Numerical Algebra, Control & Optimization
- AIMS Mathematics
- Conference Publications
- Electronic Research Announcements
- Mathematics in Engineering

### Open Access Journals

In this paper, we mainly study the Cauchy problem of an integrable dispersive Hunter-Saxton equation in periodic domain. Firstly, we establish local well-posedness of the Cauchy problem of the equation in $H^s (\mathbb{S}), s > \frac{3}{2},$ by applying the Kato method. Secondly, by using some conservative quantities, we give a precise blow-up criterion and a blow-up result of strong solutions to the equation. Finally, based on a sign-preserve property, we transform the original equation into the sinh-Gordon equation. By using the travelling wave solutions of the sinh-Gordon equation and a period stretch between these two equations, we get the travelling wave solutions of the original equation.

In this paper, we mainly study the Cauchy problem of the Chemo-taxis-Navier-Stokes equations with initial data in critical Besov spaces. We first get the local wellposedness of the system in $\mathbb{R}^d \, (d≥2)$ by the Picard theorem, and then extend the local solutions to be global under the only smallness assumptions on $\|u_0^h\|_{\dot{B}_{p, 1}^{-1+\frac{d}{p}}}$, $\|n_0\|_{\dot{B}_{q, 1}^{-2+\frac{d}{q}}}$ and $\|c_0\|_{\dot{B}_{r, 1}^{\frac{d}{r}}}$. This obtained result implies the global wellposedness of the equations with large initial vertical velocity component. Moreover, by fully using the global wellposedness of the classical 2D Navier-Stokes equations and the weighted Chemin-Lerner space, we can also extend the obtained local solutions to be global in $\mathbb{R}^2$ provided the initial cell density $n_0$ and the initial chemical concentration $c_0$ are doubly exponential small compared with the initial velocity field $u_0$.

In this paper, we mainly consider the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators: $m=(1-\partial_x^2)^su, s>1$. By Littlewood-Paley theory and transport equation theory, we first establish the local well-posedness of the generalized b-equation with fractional higher-order inertia operators which is the subsystem of the generalized two-component water wave system. Then we prove the local well-posedness of the generalized two-component water wave system with fractional higher-order inertia operators. Next, we present the blow-up criteria for these systems. Moreover, we obtain some global existence results for these systems.

We establish the local well-posedness for a generalized Novikov equation in nonhomogeneous Besov spaces. Besides, we obtain a blow-up criteria and provide a sufficient condition for strong solutions to blow up in finite time.

## Year of publication

## Related Authors

## Related Keywords

[Back to Top]