\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Classification of nonnegative traveling wave solutions for certain 1D degenerate parabolic equation and porous medium type equation

  • *Corresponding author: Yu Ichida

    *Corresponding author: Yu Ichida 

IY was partially supported by JSPS KAKENHI Grant Number JP21J20035 and JP22KJ2844

Abstract / Introduction Full Text(HTML) Figure(6) Related Papers Cited by
  • This paper reports results on the classification of traveling wave solutions, including nonnegative traveling wave solutions in a weak sense, in the spatial 1D degenerate parabolic equation. These are obtained through dynamical systems theory and geometric approaches (in particular, Poincaré compactification). Classification of traveling wave solutions means enumerating those that exist and presenting properties of each solution, such as its profile and asymptotic behavior. The results examine a different range of parameters included in the equation, using the same techniques as discussed in the earlier work [Y. Ichida, Discrete Contin. Dyn. Syst., Ser. B, 28 (2023), no. 2, 1116-1132]. In a clear departure from this previous work, the classification results obtained in this paper and the successful application of the known transformation also yield results for the classification of (weak) nonnegative traveling wave solutions for spatial 1D porous medium equations with special nonlinear terms. Finally, the bifurcations at infinity occur in the two-dimensional ordinary differential equations that characterize these traveling wave solutions are shown.

    Mathematics Subject Classification: Primary: 35K65, 35C07, 34C05; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Schematic pictures of the traveling wave solutions obtained in Theorem 2.8. Here it should be noted that the position of the singularity points $ \xi_{-} $ and $ \xi_{+} $ are not determined in our studies, however, they are shown in the figures for convenience. [Top left: The weak traveling wave solution in Theorem 2.8 (i).] [Top right: The weak traveling wave solution in Theorem 2.8 (ii).] [Lower center: The weak traveling wave solution in Theorem 2.8 (iii).]

    Figure 2.  Schematic pictures of the traveling wave solutions obtained in Theorem 2.9. Here it should be noted that the position of the singularity point $ \xi_{-} $ is not determined in our studies, however, they are shown in the figures for convenience. [Left: The weak traveling wave solution in Theorem 2.9 (iv) in the case that $ D<0 $.] [Right: The traveling wave solution on $ \xi\in \mathbb{R} $ obtained in Theorem 2.9 (v) in the case that $ D>0 $.]

    Figure 3.  Schematic pictures of the dynamics on the Poincaré disk in the case that $ 0<p<1 $. [Left: $ \delta = 0 $.] [Right: $ \delta = 1 $.]

    Figure 4.  Schematic diagram of the finite equilibria and equilibria at infinity on the Poincaré disk. White and Black circles denote source and sink equilibria, respectively. Gray squares denote saddle equilibria, and gray diamonds equilibria with the center manifold. Left, center and right disks correspond to the case that $ 0<p<1 $, $ p = 1 $ and $ p>1 $, respectively

    Figure 5.  Schematic picture of the bifurcation on $ \overline{U}_2 $. The gray circles correspond to the equilibria $ E_3 $ and $ E_4 $ on $ \overline{U}_2 $

    Figure 6.  Locations of the Poincaré sphere and chart $ \overline{U}_{2} $

  • [1] M. J. ÁlvarezA. Ferragut and X. Jarque, A survey on the blow up technique, Internat. J. Bifur. Chaos Appl. Sci. Engrg, 21 (2011), 3108-3118.  doi: 10.1142/S0218127411030416.
    [2] K. Anada and T. Ishiwata, Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation, J. Differential Equations, 262 (2017), 181-271.  doi: 10.1016/j.jde.2016.09.023.
    [3] K. AnadaT. Ishiwata and T. Ushijima, Asymptotic expansions of traveling wave solutions for a quasilinear parabolic equation, Jpn. J. Ind. Appl. Math, 39 (2022), 889-920.  doi: 10.1007/s13160-022-00532-z.
    [4] S. Angenent, On the formation of singularities in the curve shortening flow, J. Diff. Geom., 33 (1991), 601-633. 
    [5] S. Angenent and J. J. L. Velázquez, Asymptotic shape of cusp singularities in curve shortening, Duke Math. J., 77 (1995), 71-110.  doi: 10.1215/S0012-7094-95-07704-7.
    [6] D. G. Aronson, The Porous Medium Equation, in "Some Problems in Nonlinear Diffusion" (A. Fasano and M. Primjcerio, Eds.), Lecture Notes in Math., Springer-Verlag, New York/Berlin, 1986. doi: 10.1007/BFb0072687.
    [7] M. Brunella and M. Miari, Topological equivalence of a plane vector field with its principal part defined through Newton polyhedra, J. Differential Equations, 85 (1990), 338-366.  doi: 10.1016/0022-0396(90)90120-E.
    [8] J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, New York, 1981.
    [9] A. De Pablo and J. L. Vázquez, Traveling waves and finite propagation in a reaction-diffusion equation, J. Differ Equ., 93 (1991), 19-61.  doi: 10.1016/0022-0396(91)90021-Z.
    [10] F. Dumortier, J. Llibre and C. J. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag, Berlin Heidelberg, 2006.
    [11] Y. Ichida, Classification of nonnegative traveling wave solutions for the 1D degenerate parabolic equations, Discrete Contin. Dyn. Syst., Ser. B, 28 (2023), 1116-1132.  doi: 10.3934/dcdsb.2022114.
    [12] Y. IchidaK. Matsue and T. O. Sakamoto, A refined asymptotic behavior of traveling wave solutions for degenerate nonlinear parabolic equations, JSIAM Lett., 12 (2020), 65-68.  doi: 10.14495/jsiaml.12.65.
    [13] Y. Ichida and T. O. Sakamoto, Quasi traveling waves with quenching in a reaction-diffusion equation in the presence of negative powers nonlinearity, Proc. Japan Acad. Ser. A, 96 (2020), 1-6.  doi: 10.3792/pjaa.96.001.
    [14] Y. Ichida and T. O. Sakamoto, Traveling wave solutions for degenerate nonlinear parabolic equations, J. Elliptic and Parabolic Equations, 6 (2020), 795-832. 
    [15] C. Kuehn, Multiple Time Scale Dynamics, Appl. Math. Sci., 191 Springer, Cham, 2015. Springer International Publishing, 2015. doi: 10.1007/978-3-319-12316-5.
    [16] Y.-C. LinC.-C. Poon and D.-H. Tsai, Contracting convex immersed closed plane curves with slow speed of curvature, Trans. Amer. Math. Soc., 364 (2012), 5735-5763.  doi: 10.1090/S0002-9947-2012-05611-X.
    [17] K. Matsue, On blow-up solutions of differential equations with Poincaré-type compactificaions, SIAM J. Appl. Dyn. Syst., 17 (2018), 2249-2288.  doi: 10.1137/17M1124498.
    [18] K. Matsue, Geometric treatments and a common mechanism in finite-time singularities for autonomous ODEs, J. Differential Equations, 267 (2019), 7313-7368.  doi: 10.1016/j.jde.2019.07.022.
    [19] C. C. Poon, Blowup rate of solutions of a degenerate nonlinear parabolic equation, Discrete Contin. Dyn. System. Ser. B, 24 (2019), 5317-5336.  doi: 10.3934/dcdsb.2019060.
    [20] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2$^{nd}$ edition, Springer-Verlag, New York, 2003.
    [21] M. Winkler, Blow-up of solutions to a degenerate parabolic equation not in divergence form, J. Differential Equations, 192 (2003), 445-474.  doi: 10.1016/S0022-0396(03)00127-X.
    [22] T. Xu and J. Yin, Traveling waves in degenerate diffusion equations, Commun. Math. Res., 39 (2023), 36-53. 
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(952) PDF downloads(163) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return