[1]
|
K. Andersson, A. Andersson and C. W. Oosterlee, Convergence of a robust deep FBSDE method for stochastic control, SIAM J. Sci. Comput., 45 (2023), A226-A255.
doi: 10.1137/22M1478057.
|
[2]
|
S. Ankirchner, C. Blanchet-Scalliet and A. Eyraud-Loisel, Credit risk premia and quadratic BSDEs with a single jump, Int. J. Theor. Appl. Finance, 13 (2010), 1103-1129.
doi: 10.1142/S0219024910006133.
|
[3]
|
C. Beck, S. Becker, P. Cheridito, A. Jentzen and A. Neufeld, Deep splitting method for parabolic PDEs, SIAM J. Sci. Comput., 43 (2021), A3135-A3154.
doi: 10.1137/19M1297919.
|
[4]
|
S. Becker, R. Braunwarth, M. Hutzenthaler, A. Jentzen and P. von Wurstemberger, Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations, Commun. Comput. Phys., 28 (2020), 2109-2138.
doi: 10.4208/cicp.OA-2020-0130.
|
[5]
|
C. Bender and J. Zhang, Time discretization and Markovian iteration for coupled FBSDEs, Ann. Appl. Probab., 18 (2008), 143-177.
doi: 10.1214/07-aap448.
|
[6]
|
Y. Z. Bergman, Option pricing with differential interest rates, Rev. Financ. Stud., 8 (1995), 475-500.
doi: 10.1093/rfs/8.2.475.
|
[7]
|
B. Bouchard and N. Touzi, Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stoch. Process. Their Appl., 111 (2004), 175-206.
doi: 10.1016/j.spa.2004.01.001.
|
[8]
|
Q. Chan-Wai-Nam, J. Mikael and X. Warin, Machine learning for semi linear PDEs, J. Sci. Comput., 79 (2019), 1667-1712.
doi: 10.1007/s10915-019-00908-3.
|
[9]
|
J.-F. Chassagneux, J. Chen, N. Frikha and C. Zhou, A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs, preprint, arXiv:2102.12051.
|
[10]
|
Y. Chen and J. W. L. Wan, Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions, Quant. Finance, 21 (2021), 45-67.
doi: 10.1080/14697688.2020.1788219.
|
[11]
|
D. Crisan and K. Manolarakis, Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing, SIAM J. Financial Math., 3 (2012), 534-571.
doi: 10.1137/090765766.
|
[12]
|
W. E, J. Han and A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Commun. Math. Stat., 5 (2017), 349-380.
doi: 10.1007/s40304-017-0117-6.
|
[13]
|
W. E, M. Hutzenthaler, A. Jentzen and T. Kruse, On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, J. Sci. Comput., 79 (2019), 1534-1571.
doi: 10.1007/s10915-018-00903-0.
|
[14]
|
W. E, M. Hutzenthaler, A. Jentzen and T. Kruse, Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, Partial Differ. Equ. Appl., 2 (2021), 1-31.
doi: 10.1007/s42985-021-00089-5.
|
[15]
|
A. Eyraud-Loisel, Backward stochastic differential equations with enlarged filtration: Option hedging of an insider trader in a financial market with jumps, Stoch. Process. Their Appl., 115 (2005), 1745-1763.
doi: 10.1016/j.spa.2005.05.006.
|
[16]
|
A. Fahim, N. Touzi and X. Warin, A probabilistic numerical method for fully nonlinear parabolic PDEs, Ann. Appl. Probab., 21 (2011), 1322-1364.
doi: 10.1214/10-aap723.
|
[17]
|
Y. Fu, W. Zhao and T. Zhou, Efficient spectral sparse grid approximations for solving multi-dimensional forward backward SDEs, Discrete Continuous Dynam. Systems - B, 22 (2017), 3439-3458.
doi: 10.3934/dcdsb.2017174.
|
[18]
|
M. Fujii, A. Takahashi and M. Takahashi, Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs, Asia-Pac. Financ. Markets, 26 (2019), 391-408.
doi: 10.1007/s10690-019-09271-7.
|
[19]
|
M. Germain, H. Pham and X. Warin, Approximation error analysis of some deep backward schemes for nonlinear PDEs, SIAM J. Sci. Comput., 44 (2022), A28-A56.
doi: 10.1137/20M1355355.
|
[20]
|
X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proc. Mach. Learn. Res., 9 (2010), 249-256. Available at PMLR: https://proceedings.mlr.press/v9/glorot10a.html.
|
[21]
|
A. Gnoatto, A. Picarelli and C. Reisinger, Deep xVA solver-A neural network based counterparty credit risk management framework,, SIAM J. Financial Math., 14 (2023), 314-352.
doi: 10.1137/21M1457606.
|
[22]
|
E. Gobet and C. Labart, Solving BSDE with adaptive control variate, SIAM J. Numer. Anal., 48 (2010), 257-277.
doi: 10.1137/090755060.
|
[23]
|
E. Gobet, J.-P. Lemor and X. Warin, A regression-based Monte Carlo method to solve backward stochastic differential equations, Ann. Appl. Probab., 15 (2005), 2172-2202.
doi: 10.1214/105051605000000412.
|
[24]
|
E. Gobet, J. G. López-Salas, P. Turkedjiev and C. Vázquez, Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs, SIAM J. Sci. Comput., 38 (2016), C652-C677.
doi: 10.1137/16M106371X.
|
[25]
|
E. Gobet and P. Turkedjiev, Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions, Math. Comp., 85 (2016), 1359-1391.
doi: 10.1090/mcom/3013.
|
[26]
|
J. Han, A. Jentzen and W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. U.S.A., 115 (2018), 8505-8510.
doi: 10.1073/pnas.1718942115.
|
[27]
|
J. Han and J. Long, Convergence of the deep BSDE method for coupled FBSDEs, Probab. Uncertain. Quant. Risk, 5 (2020), 1-33.
doi: 10.1186/s41546-020-00047-w.
|
[28]
|
K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Netw., 2 (1989), 359-366.
doi: 10.1016/0893-6080(89)90020-8.
|
[29]
|
C. Huré, H. Pham and X. Warin, Deep backward schemes for high-dimensional nonlinear PDEs, Math. Comp., 89 (2020), 1547-1579.
doi: 10.1090/mcom/3514.
|
[30]
|
M. Hutzenthaler, A. Jentzen and T. Kruse, Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities, Found. Comput. Math., 22 (2022), 905-966.
doi: 10.1007/s10208-021-09514-y.
|
[31]
|
M. Hutzenthaler, A. Jentzen, T. Kruse and T. A. Nguyen, A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations, SN Partial Differ. Equ. Appl., 1 (2020), 1-34.
doi: 10.1007/s42985-019-0006-9.
|
[32]
|
M. Hutzenthaler, A. Jentzen, T. Kruse and T. A. Nguyen, Multilevel Picard approximations for high-dimensional semilinear second-order PDEs with Lipschitz nonlinearities, preprint, arXiv:2009.02484.
|
[33]
|
M. Hutzenthaler, A. Jentzen, T. Kruse and T. A. Nguyen, Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations, J. Numer. Math., 31 (2023), 1-28.
doi: 10.1515/jnma-2021-0111.
|
[34]
|
M. Hutzenthaler, A. Jentzen, T. Kruse, T. A. Nguyen and P. von Wurstemberger, Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, Proc. A., 476 (2020), 20190630, 25 pp.
doi: 10.1098/rspa.2019.0630.
|
[35]
|
M. Hutzenthaler, A. Jentzen, B. Kuckuck and J. L. Padgett, Strong ${L}^{p} $-error analysis of nonlinear Monte Carlo approximations for high-dimensional semilinear partial differential equations, preprint, arXiv:2110.08297.
|
[36]
|
M. Hutzenthaler and T. Kruse, Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities, SIAM J. Numer. Anal., 58 (2020), 929-961.
doi: 10.1137/17M1157015.
|
[37]
|
M. Hutzenthaler and T. A. Nguyen, Multilevel Picard approximations of high-dimensional semilinear partial differential equations with locally monotone coefficient functions, Appl. Numer. Math., 181 (2022), 151-175.
doi: 10.1016/j.apnum.2022.05.009.
|
[38]
|
M. Hutzenthaler and T. A. Nguyen, Multilevel Picard approximations for high-dimensional decoupled forward-backward stochastic differential equations, preprint, arXiv:2204.08511.
|
[39]
|
S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, Proc. Mach. Learn. Res., 37 (2015), 448-456. Available at PMLR: https://proceedings.mlr.press/v37/ioffe15.html.
|
[40]
|
S. Ji, S. Peng, Y. Peng and X. Zhang, Three algorithms for solving high-dimensional fully coupled FBSDEs through deep learning, IEEE Intell. Syst., 35 (2020), 71-84.
doi: 10.1109/MIS.2020.2971597.
|
[41]
|
S. Ji, S. Peng, Y. Peng and X. Zhang, A control method for solving high-dimensional Hamiltonian systems through deep neural networks, preprint, arXiv:2111.02636.
|
[42]
|
S. Ji, S. Peng, Y. Peng and X. Zhang, A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs, preprint, arXiv:2204.05796.
|
[43]
|
Y. Jiang and J. Li, Convergence of the Deep BSDE method for FBSDEs with non-Lipschitz coefficients, Probab. Uncertain. Quant. Risk, 6 (2021), 391-408.
doi: 10.3934/puqr.2021019.
|
[44]
|
L. Kapllani and L. Teng, Multistep schemes for solving backward stochastic differential equations on GPU, J. Math. Industry, 12 (2022), 1-22.
doi: 10.1186/s13362-021-00118-3.
|
[45]
|
N. E. Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Financ., 7 (1997), 1-71.
doi: 10.1111/1467-9965.00022.
|
[46]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint, arXiv:1412.6980.
|
[47]
|
P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5.
|
[48]
|
S. Kremsner, A. Steinicker and M. Szölgyenyi, A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics, Risks, 8 (2020), 136.
doi: 10.3390/risks8040136.
|
[49]
|
C. Labart and J. Lelong, A parallel algorithm for solving BSDEs: Application to the pricing and hedging of American options, Monte Carlo Methods Appl., 19 (2013), 11-39.
doi: 10.1515/mcma-2013-0001.
|
[50]
|
J.-P. Lemor, E. Gobet and X. Warin, Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations, Bernoulli, 12 (2006), 889-916.
doi: 10.3150/bj/1161614951.
|
[51]
|
J. Liang, Z. Xu and P. Li, Deep learning-based least squares forward-backward stochastic differential equation solver for high-dimensional derivative pricing, Quant. Finance, 21 (2021), 1309-1323.
doi: 10.1080/14697688.2021.1881149.
|
[52]
|
J. Ma, J. Shen and Y. Zhao, On numerical approximations of forward-backward stochastic differential equations, SIAM J. Numer. Anal., 46 (2008), 2636-2661.
doi: 10.1137/06067393X.
|
[53]
|
B. Negyesi, K. Andersson and C. W. Oosterlee, The one step Malliavin scheme: New discretization of BSDEs implemented with deep learning regressions, preprint, arXiv:2110.05421.
|
[54]
|
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-14394-6.
|
[55]
|
E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Syst. Control. Lett., 14 (1990), 55-61.
doi: 10.1016/0167-6911(90)90082-6.
|
[56]
|
M. A. Pereira, Z. Wang, I. Exarchos and E. A. Theodorou, Learning deep stochastic optimal control policies using forward-backward SDEs, preprint, arXiv:1902.03986.
|
[57]
|
H. Pham, X. Warin and M. Germain, Neural networks-based backward scheme for fully nonlinear PDEs, SN Partial Differ. Equ. Appl., 2 (2021), 1-24.
doi: 10.1007/s42985-020-00062-8.
|
[58]
|
M. Raissi, Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations, preprint, arXiv:1804.07010.
|
[59]
|
M. J. Ruijter and C. W. Oosterlee, Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance, Appl. Numer. Math., 103 (2016), 1-26.
doi: 10.1016/j.apnum.2015.12.003.
|
[60]
|
M. J. Ruijter and C. W. Oosterlee, A Fourier cosine method for an efficient computation of solutions to BSDEs, SIAM J. Sci. Comput., 37 (2015), A859-A889.
doi: 10.1137/130913183.
|
[61]
|
D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by back-propagating errors, Nature, 323 (1986), 533-536.
doi: 10.1038/323533a0.
|
[62]
|
A. M. Schäfer and H. G. Zimmermann, Recurrent neural networks are universal approximators, Lecture Notes in Computer Science, 4131 (2006), 632-640.
doi: 10.1007/11840817_66.
|
[63]
|
A. Takahashi, Y. Tsuchida and T. Yamada, A new efficient approximation scheme for solving high-dimensional semilinear PDEs: control variate method for Deep BSDE solver, J. Comput. Phys., 454 (2022), 110956.
doi: 10.1016/j.jcp.2022.110956.
|
[64]
|
L. Teng, A review of tree-based approaches to solving forward-backward stochastic differential equations, J. Comput. Finance, 25 (2021), 125-159.
doi: 10.21314/JCF.2021.010.
|
[65]
|
L. Teng, Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations, Appl. Math. Comput., 426 (2022), 127119.
doi: 10.1016/j.amc.2022.127119.
|
[66]
|
H. Wang, H. Chen, A. Sudjianto, R. Liu and Q. Shen, Deep learning-based BSDE solver for LIBOR market model with application to Bermudan swaption pricing and hedging, preprint, arXiv:1807.06622.
|
[67]
|
G. Zhang, M. Gunzburger and W. Zhao, A sparse-grid method for multi-dimensional backward stochastic differential equations, J. Comp. Math., 31 (2013), 221-248.
doi: 10.4208/jcm.1212-m4014.
|
[68]
|
J. Zhang, A numerical scheme for BSDEs, Ann. Appl. Probab., 14 (2004), 459-488.
doi: 10.1214/aoap/1075828058.
|
[69]
|
W. Zhao, L. Chen and S. Peng, A new kind of accurate numerical method for backward stochastic differential equations, SIAM J. Sci. Comput., 28 (2006), 1563-1581.
doi: 10.1137/05063341X.
|
[70]
|
W. Zhao, Y. Fu and T. Zhou, New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations, SIAM J. Sci. Comput., 36 (2014), A1731-A1751.
doi: 10.1137/130941274.
|
[71]
|
W. Zhao, G. Zhang and L. Ju, A stable multistep scheme for solving backward stochastic differential equations, SIAM J. Numer. Anal., 48 (2010), 1369-1394.
doi: 10.1137/09076979X.
|