\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stress formulation and duality approach in periodic homogenization

  • *Corresponding author: Anca-Maria Toader

    *Corresponding author: Anca-Maria Toader
Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • This paper describes several different variational formulations of the so-called "cellular problem'' which is a system of partial differential equations arising in the theory of homogenization, subject to periodicity boundary conditions. These variational formulations of the cellular problem, all of them equivalent, have as main unknown the displacement, the stress or the strain, respectively. For each of these three cases, an equivalent minimization problem is introduced. The variational formulation in stress proves to have a distinguished role and it gives rise to two dual formulations, one in displacement-stress and another one in strain-stress. The corresponding Lagrangians may be used in numerical optimization for developing algorithms based on alternated directions, of Uzawa type.

    Mathematics Subject Classification: Primary: 35B27; Secondary: 74Q05, 74Q15, 74Q99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A periodic function with $ u'' = -2 $ in $ {]}0,1{[} $

    Figure 2.  Relationships between different variational formulations of the cellular problem

  • [1] G. Allaire, Homogenization and two-scale convergence, SIAM Journal of Mathematical Analysis, 23 (1992), 1482-1518.  doi: 10.1137/0523084.
    [2] G. Allaire, Two-scale convergence and homogenization of periodic structures, in School on Homogenization, ICTP, SISSA ref., 140 (1993), 1-19.
    [3] C. AmroucheP. G. CiarletL. Gratie and S. Kesavan, On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl, 86 (2006), 116-132.  doi: 10.1016/j.matpur.2006.04.004.
    [4] K. J. ArrowL. Hurwicz and  H. UzawaStudies in Linear and Nonlinear Programming, Stanford University Press, CA, 1958. 
    [5] C. Barbarosie and S. Lopes, A generalized notion of compliance, Comptes Rendus Mécanique, 339 (2011), 641-648. 
    [6] C. Barbarosie and A. M. Toader, ManiFEM, a $\mathtt{C++}$ Library for Meshes and Finite Elements on Manifolds, https://manifem.rd.ciencias.ulisboa.pt/.
    [7] C. Barbarosie and A. M. Toader, Shape and topology optimization for periodic problems, part one, Structural and Multidisciplinary Optimization, 40 (2010), 381-391.  doi: 10.1007/s00158-009-0378-0.
    [8] C. Barbarosie and A. M. Toader, Donati representation theorem for periodic functions in relation to homogenization theory, preprint, 2022, arXiv: 2209.06801.
    [9] A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Stud. Math. Appl., 5, North-Holland Publishing Co., Amsterdam-New York, 1978.
    [10] M. BenziG. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numerica, 14 (2005), 1-137.  doi: 10.1017/S0962492904000212.
    [11] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
    [12] P. G. Ciarlet, G. Geymonat and F. Krasucki, A new duality approach to elasticity, Mathematical Models and Methods in Applied Sciences, 22 (2012), 1150003, 21 pp. doi: 10.1142/S0218202512005861.
    [13] I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, ParisGauthier-Villars, Paris-Brussels-Montreal, Que., 1974.
    [14] W. Fenchel, On conjugate convex functions, Canadian J. of Math., 1 (1949), 73-77.  doi: 10.4153/CJM-1949-007-x.
    [15] R. T. Haftka and Z. Gürdal, Elements of Structural Optimization, Solid Mech. Appl., 11, Kluwer Academic Publishers Group, Dordrecht, 1992. doi: 10.1007/978-94-011-2550-5.
    [16] A. G. M. Michell, The limits of economy of materials in frame-structures, Philosophical Magazine, 8 (1904), 589-597. 
    [17] J. J. Moreau, Inf-convolution, sous-additivité, convexité des fonctions numériques, J. Math. Pures Appl., 49 (1970), 109-154. 
    [18] F. Murat and L. Tartar, H-convergence, in Topics in the Mathematical Modelling of Composite Materials, Birkhäuser, Progress in Nonlinear Differential Equations and Their Applications, 31 (1997), 21-43.
    [19] O. A. Oleinik, A. S. Shamaev and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, Stud. Math. Appl., 26, North-Holland Publishing Co., Amsterdam, 1992.
    [20] E. Sanchez-Palencia and A. Zaoui, Homogenization Techniques for Composite Media, Lecture Notes in Phys., 272, Springer-Verlag, Berlin, 1987. doi: 10.1007/3-540-17616-0.
    [21] P. Suquet, Elements of homogenization for inelastic solid mechanics, in Homogenization Techniques for Composite Media, Springer-Verlag, Lecture Notes in Physics, 272 (1987), 193-278. doi: 10.1007/3-540-17616-0_15.
    [22] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Pitman Press, Research Notes in Mathematics Ⅳ, 39 (1979), 136-212.
    [23] A. M. Toader, The topological derivative of elastic coefficients of periodic microstructures, SIAM Journal on Control and Optimization, 49 (2011), 1607-1628.  doi: 10.1137/100782772.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(579) PDF downloads(191) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return