In this paper, we investigate the well-posedness of weak solutions to the time-fractional Fokker–Planck equation. Its dynamics is governed by anomalous diffusion, and we consider the most general case of space-time dependent forces. Consequently, the fractional derivatives appear on the right-hand side of the equation, and they cannot be brought to the left-hand side, which would have been preferable from an analytical perspective. For showing the model's well-posedness, we derive an energy inequality by considering nonstandard and novel testing methods that involve a series of convolutions and integrations. We close the estimate by a Henry–Gronwall-type inequality. Lastly, we propose a numerical algorithm based on a nonuniform L1 scheme and present some simulation results for various forces.
Citation: |
[1] | A. Alikhanov, A priori estimates for solutions of boundary value problems for fractional-order equations, Differential Equations, 46 (2010), 660-666. doi: 10.1134/S0012266110050058. |
[2] | M. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes and G. N. Wells, The FEniCS project version 1.5, Archive of Numerical Software, 3 (2015), 100. |
[3] | H. W. Alt, Linear Functional Analysis: An Application-Oriented Introduction, Springer-Verlag London, Ltd., London, 2016. doi: 10.1007/978-1-4471-7280-2. |
[4] | C. N. Angstmann, I. C. Donnelly, B. I. Henry, T. A. Langlands and P. Straka, Generalized continuous time random walks, master equations, and fractional Fokker–Planck equations, SIAM Journal on Applied Mathematics, 75 (2015), 1445-1468. doi: 10.1137/15M1011299. |
[5] | D. Baffet and J. S. Hesthaven, A kernel compression scheme for fractional differential equations, SIAM Journal on Numerical Analysis, 55 (2017), 496-520. doi: 10.1137/15M1043960. |
[6] | D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, Ser. Complex. Nonlinearity Chaos, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216. |
[7] | D. Baleanu and A. M. Lopes, Handbook of Fractional Calculus with Applications: Applications in Engineering, Life and Social Sciences, Part A, vol. 7, De Gruyter, 2019. |
[8] | E. Barkai, Fractional Fokker–Planck equation, solution, and application, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 63 (2001), 046118. doi: 10.1103/PhysRevE.63.046118. |
[9] | E. Barkai, R. Metzler and J. Klafter, From continuous time random walks to the fractional Fokker–Planck equation, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61 (2000), 132-138. doi: 10.1103/PhysRevE.61.132. |
[10] | F. Camilli, S. Duisembay and Q. Tang, Approximation of an optimal control problem for the time-fractional Fokker–Planck equation, Journal of Dynamics and Games, 8 (2021), 381-402. doi: 10.3934/jdg.2021013. |
[11] | A. V. Chechkin, J. Klafter and I. M. Sokolov, Fractional Fokker–Planck equation for ultraslow kinetics, EPL (Europhysics Letters), 63 (2003), 326. doi: 10.1209/epl/i2003-00539-0. |
[12] | K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition using Differential Operators of Caputo Type, Lecture Notes in Math., 2004, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2. |
[13] | K. Diethelm, R. Garrappa and M. Stynes, Good (and not so good) practices in computational methods for fractional calculus, Mathematics, 8 (2020), 324. doi: 10.3390/math8030324. |
[14] | J. Dölz, H. Egger and V. Shashkov, A fast and oblivious matrix compression algorithm for Volterra integral operators, Advances in Computational Mathematics, 47 (2021), Paper No. 81, 24 pp. doi: 10.1007/s10444-021-09902-6. |
[15] | M. Fritz, U. Khristenko and B. Wohlmuth, Equivalence between a time-fractional and an integer-order gradient flow: The memory effect reflected in the energy, Advances in Nonlinear Analysis, 12 (2023), Paper No. 20220262, 23 pp. doi: 10.1515/anona-2022-0262. |
[16] | M. Fritz, C. Kuttler, M. L. Rajendran, B. Wohlmuth and L. Scarabosio, On a subdiffusive tumour growth model with fractional time derivative, IMA Journal of Applied Mathematics, 86 (2021), 688-729. doi: 10.1093/imamat/hxab009. |
[17] | M. Fritz, M. L. Rajendran and B. Wohlmuth, Time-fractional Cahn–Hilliard equation: Well-posedness, regularity, degeneracy, and numerical solutions, Computers & Mathematics with Applications, 108 (2022), 66-87. doi: 10.1016/j.camwa.2022.01.002. |
[18] | M. Fritz, E. Süli and B. Wohlmuth, Analysis of a dilute polymer model with a time-fractional derivative, SIAM Journal on Mathematical Analysis, 56 (2024), 2063-2089. doi: 10.1137/23M1590767. |
[19] | H. Fu, G.-C. Wu, G. Yang and L.-L. Huang, Continuous time random walk to a general fractional Fokker–Planck equation on fractal media, European Physical Journal: Special Topics, 230 (2021), 3927-3933. |
[20] | E. Heinsalu, M. Patriarca, I. Goychuk and P. Hänggi, Use and abuse of a fractional Fokker–Planck dynamics for time-dependent driving, Physical Review Letters, 99 (2007), 120602. doi: 10.1103/PhysRevLett.99.120602. |
[21] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin-New York, 1981. |
[22] | C. Huang, K. N. Le and M. Stynes, A new analysis of a numerical method for the time-fractional Fokker–Planck equation with general forcing, IMA Journal of Numerical Analysis, 40 (2020), 1217-1240. doi: 10.1093/imanum/drz006. |
[23] | B. Jin and Z. Zhou, Numerical Treatment and Analysis of Time-Fractional Evolution Equations, vol. 214 of Applied Mathematical Sciences, Springer Nature, 2023. doi: 10.1007/978-3-031-21050-1. |
[24] | U. Khristenko and B. Wohlmuth, Solving time-fractional differential equations via rational approximation, IMA Journal of Numerical Analysis, 43 (2023), 1263-1290. doi: 10.1093/imanum/drac022. |
[25] | K. N. Le, W. McLean and K. Mustapha, Numerical solution of the time-fractional Fokker–Planck equation with general forcing, SIAM Journal on Numerical Analysis, 54 (2016), 1763-1784. doi: 10.1137/15M1031734. |
[26] | K. N. Le, W. McLean and K. Mustapha, A semidiscrete finite element approximation of a time-fractional Fokker–Planck equation with nonsmooth initial data, SIAM Journal on Scientific Computing, 40 (2018), A3831-A3852. doi: 10.1137/17M1125261. |
[27] | K. N. Le, W. McLean and M. Stynes, Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing, Communications on Pure & Applied Analysis, 18 (2019), 2765-2787. doi: 10.3934/cpaa.2019124. |
[28] | K.-N. Le and M. Stynes, An $\alpha$-robust semidiscrete finite element method for a Fokker–Planck initial-boundary value problem with variable-order fractional time derivative, Journal of Scientific Computing, 86 (2021), 1-16. doi: 10.1007/s10915-020-01375-x. |
[29] | L. Li and J.-G. Liu, Some compactness criteria for weak solutions of time fractional PDEs, SIAM Journal on Mathematical Analysis, 50 (2018), 3963-3995. doi: 10.1137/17M1145549. |
[30] | M. Magdziarz, Stochastic representation of subdiffusion processes with time-dependent drift, Stochastic Processes and their Applications, 119 (2009), 3238-3252. doi: 10.1016/j.spa.2009.05.006. |
[31] | M. Magdziarz, A. Weron and J. Klafter, Equivalence of the fractional Fokker–Planck and subordinated langevin equations: The case of a time-dependent force, Physical Review Letters, 101 (2008), 210601. doi: 10.1103/PhysRevLett.101.210601. |
[32] | W. McLean and K. Mustapha, Uniform stability for a spatially discrete, subdiffusive Fokker–Planck equation, Numerical Algorithms, 89 (2022), 1441-1463. doi: 10.1007/s11075-021-01160-3. |
[33] | W. McLean, K. Mustapha, R. Ali and O. Knio, Well-posedness of time-fractional advection-diffusion-reaction equations, Fractional Calculus and Applied Analysis, 22 (2019), 918-944. doi: 10.1515/fca-2019-0050. |
[34] | W. McLean, K. Mustapha, R. Ali and O. M. Knio, Regularity theory for time-fractional advection-diffusion-reaction equations, Computers & Mathematics with Applications, 79 (2020), 947-961. doi: 10.1016/j.camwa.2019.08.008. |
[35] | R. Metzler, E. Barkai and J. Klafter, Deriving fractional Fokker–Planck equations from a generalised master equation, EPL (Europhysics Letters), 46 (1999), 431-436. doi: 10.1209/epl/i1999-00279-7. |
[36] | R. Metzler, E. Barkai and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker–Planck equation approach, Physical Review Letters, 82 (1999), 3563-3567. doi: 10.1103/PhysRevLett.82.3563. |
[37] | R. Metzler and T. F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation, Chemical Physics, 284 (2002), 67-90. |
[38] | K. Mustapha, O. M. Knio and O. P. L. Maitre, A second-order accurate numerical scheme for a time-fractional Fokker–Planck equation, IMA Journal of Numerical Analysis, 43 (2022), 2115-2136. doi: 10.1093/imanum/drac031. |
[39] | K. M. Owolabi and A. Atangana, Numerical Methods for Fractional Differentiation, Springer, Singapore, 2019. doi: 10.1007/978-981-15-0098-5. |
[40] | L. Peng and Y. Zhou, The existence of mild and classical solutions for time fractional Fokker–Planck equations, Monatshefte fur Mathematik, 199 (2022), 377-410. doi: 10.1007/s00605-022-01710-4. |
[41] | I. Petráš, Handbook of Fractional Calculus with Applications: Applications in Control, vol. 6, De Gruyter, 2019. |
[42] | L. Pinto and E. Sousa, Numerical solution of a time-space fractional Fokker–Planck equation with variable force field and diffusion, Communications in Nonlinear Science and Numerical Simulation, 50 (2017), 211-228. doi: 10.1016/j.cnsns.2017.03.004. |
[43] | T. Sandev, A. Chechkin, H. Kantz and R. Metzler, Diffusion and Fokker–Planck–Smoluchowski equations with generalized memory kernel, Fractional Calculus and Applied Analysis, 18 (2015), 1006-1038. doi: 10.1515/fca-2015-0059. |
[44] | J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96. doi: 10.1007/BF01762360. |
[45] | I. M. Sokolov, A. Blumen and J. Klafter, Dynamics of annealed systems under external fields: CTRW and the fractional Fokker–Planck equations, EPL (Europhysics Letters), 56 (2001), 175-180. doi: 10.1209/epl/i2001-00503-6. |
[46] | I. M. Sokolov and J. Klafter, Field-induced dispersion in subdiffusion, Physical Review Letters, 97 (2006), 140602. doi: 10.1103/PhysRevLett.97.140602. |
[47] | V. E. Tarasov, Handbook of Fractional Calculus with Applications: Applications in Physics, Part A, vol. 4, De Gruyter, 2019. |
[48] | V. Vergara and R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Mathematische Zeitschrift, 259 (2008), 287-309. doi: 10.1007/s00209-007-0225-1. |
[49] | V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM Journal on Mathematical Analysis, 47 (2015), 210-239. doi: 10.1137/130941900. |
[50] | A. Weron, M. Magdziarz and K. Weron, Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker–Planck equation, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77 (2008), 036704. doi: 10.1103/PhysRevE.77.036704. |
[51] | P. Wittbold, P. Wolejko and R. Zacher, Bounded weak solutions of time-fractional porous medium type and more general nonlinear and degenerate evolutionary integro-differential equations, Journal of Mathematical Analysis and Applications, 499 (2021), 125007. doi: 10.1016/j.jmaa.2021.125007. |
[52] | S. Yan and M. Cui, Finite difference scheme for the time-fractional Fokker–Planck equation with time- and space-dependent forcing, International Journal of Computer Mathematics, 96 (2019), 379-398. doi: 10.1080/00207160.2018.1461214. |
[53] | R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialaj Ekvacioj, 52 (2009), 1-18. doi: 10.1619/fesi.52.1. |
Nonuniform time meshes on the interval
Plot of the solution
Plot of the solution
Plot of the solution
Plot of the solution
Plot of the solution
Plot of the solution to the time-fractional Fokker–Planck equation (20) (ⅰ) and the model with no right-hand side (ⅱ) for varying time