\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Well-posedness and simulation of weak solutions to the time-fractional Fokker–Planck equation with general forcing

The author is supported by the state of Upper Austria

Abstract / Introduction Full Text(HTML) Figure(7) Related Papers Cited by
  • In this paper, we investigate the well-posedness of weak solutions to the time-fractional Fokker–Planck equation. Its dynamics is governed by anomalous diffusion, and we consider the most general case of space-time dependent forces. Consequently, the fractional derivatives appear on the right-hand side of the equation, and they cannot be brought to the left-hand side, which would have been preferable from an analytical perspective. For showing the model's well-posedness, we derive an energy inequality by considering nonstandard and novel testing methods that involve a series of convolutions and integrations. We close the estimate by a Henry–Gronwall-type inequality. Lastly, we propose a numerical algorithm based on a nonuniform L1 scheme and present some simulation results for various forces.

    Mathematics Subject Classification: Primary: 26A33, 34A08, 34K37, 35R11, 60G22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Nonuniform time meshes on the interval $ [0,T] $ with $ t_n = (n/N)^\gamma T $ for $ \gamma\in \{1,1.5,2,3\} $ (top to bottom) and $ N = 20 $; the red nodes are $ \{0,N/2,N\} $ in all cases

    Figure 2.  Plot of the solution $ \psi $ for varying values of $ \alpha \in \big\{\frac14,\frac12,\frac34,1\big\} $; on the left (a) at $ t = 0.02 $ and on the right (b) at $ t = 0.5 $

    Figure 3.  Plot of the solution $ \psi $ for varying time $ t \in \{0.02,0.045,0.08,0.125,0.245,0.5\} $; on the left (a) for $ \alpha = 1 $ and on the right (b) for $ \alpha = \frac12 $

    Figure 4.  Plot of the solution $ \psi $ for varying values of $ \alpha \in \big\{\frac14,\frac12,\frac34,1\big\} $; on the left (a) at $ t = 0.02 $ and on the right (b) at $ t = 0.18 $

    Figure 5.  Plot of the solution $ \psi $ for varying time $ t \in \{0.02,0.045,0.08,0.125,0.245,0.5\} $; on the left (a) for $ \alpha=1 $ and on the right (b) for $ \alpha=\frac12 $

    Figure 6.  Plot of the solution $ \psi $ for different values of $ \alpha $ at different times $ t $; we consider the pairings $ (\alpha,t) \in \{(\frac14,t_5),(\frac12,t_{14}),(\frac34,t_{18}), (1,t_{37})\} $ for $ t_n $ as defined at the beginning of Section 5

    Figure 7.  Plot of the solution to the time-fractional Fokker–Planck equation (20) (ⅰ) and the model with no right-hand side (ⅱ) for varying time $ t \in \{0.02,0.045,0.08\} $; on the left (a) for $ \alpha = \frac14 $ and on the right (b) for $ \alpha = \frac34 $

  • [1] A. Alikhanov, A priori estimates for solutions of boundary value problems for fractional-order equations, Differential Equations, 46 (2010), 660-666.  doi: 10.1134/S0012266110050058.
    [2] M. AlnaesJ. BlechtaJ. HakeA. JohanssonB. KehletA. LoggC. RichardsonJ. RingM. E. Rognes and G. N. Wells, The FEniCS project version 1.5, Archive of Numerical Software, 3 (2015), 100. 
    [3] H. W. Alt, Linear Functional Analysis: An Application-Oriented Introduction, Springer-Verlag London, Ltd., London, 2016. doi: 10.1007/978-1-4471-7280-2.
    [4] C. N. AngstmannI. C. DonnellyB. I. HenryT. A. Langlands and P. Straka, Generalized continuous time random walks, master equations, and fractional Fokker–Planck equations, SIAM Journal on Applied Mathematics, 75 (2015), 1445-1468.  doi: 10.1137/15M1011299.
    [5] D. Baffet and J. S. Hesthaven, A kernel compression scheme for fractional differential equations, SIAM Journal on Numerical Analysis, 55 (2017), 496-520.  doi: 10.1137/15M1043960.
    [6] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, Ser. Complex. Nonlinearity Chaos, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216.
    [7] D. Baleanu and A. M. Lopes, Handbook of Fractional Calculus with Applications: Applications in Engineering, Life and Social Sciences, Part A, vol. 7, De Gruyter, 2019.
    [8] E. Barkai, Fractional Fokker–Planck equation, solution, and application, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 63 (2001), 046118.  doi: 10.1103/PhysRevE.63.046118.
    [9] E. BarkaiR. Metzler and J. Klafter, From continuous time random walks to the fractional Fokker–Planck equation, Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61 (2000), 132-138.  doi: 10.1103/PhysRevE.61.132.
    [10] F. CamilliS. Duisembay and Q. Tang, Approximation of an optimal control problem for the time-fractional Fokker–Planck equation, Journal of Dynamics and Games, 8 (2021), 381-402.  doi: 10.3934/jdg.2021013.
    [11] A. V. ChechkinJ. Klafter and I. M. Sokolov, Fractional Fokker–Planck equation for ultraslow kinetics, EPL (Europhysics Letters), 63 (2003), 326.  doi: 10.1209/epl/i2003-00539-0.
    [12] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition using Differential Operators of Caputo Type, Lecture Notes in Math., 2004, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.
    [13] K. DiethelmR. Garrappa and M. Stynes, Good (and not so good) practices in computational methods for fractional calculus, Mathematics, 8 (2020), 324.  doi: 10.3390/math8030324.
    [14] J. Dölz, H. Egger and V. Shashkov, A fast and oblivious matrix compression algorithm for Volterra integral operators, Advances in Computational Mathematics, 47 (2021), Paper No. 81, 24 pp. doi: 10.1007/s10444-021-09902-6.
    [15] M. Fritz, U. Khristenko and B. Wohlmuth, Equivalence between a time-fractional and an integer-order gradient flow: The memory effect reflected in the energy, Advances in Nonlinear Analysis, 12 (2023), Paper No. 20220262, 23 pp. doi: 10.1515/anona-2022-0262.
    [16] M. FritzC. KuttlerM. L. RajendranB. Wohlmuth and L. Scarabosio, On a subdiffusive tumour growth model with fractional time derivative, IMA Journal of Applied Mathematics, 86 (2021), 688-729.  doi: 10.1093/imamat/hxab009.
    [17] M. FritzM. L. Rajendran and B. Wohlmuth, Time-fractional Cahn–Hilliard equation: Well-posedness, regularity, degeneracy, and numerical solutions, Computers & Mathematics with Applications, 108 (2022), 66-87.  doi: 10.1016/j.camwa.2022.01.002.
    [18] M. FritzE. Süli and B. Wohlmuth, Analysis of a dilute polymer model with a time-fractional derivative, SIAM Journal on Mathematical Analysis, 56 (2024), 2063-2089.  doi: 10.1137/23M1590767.
    [19] H. FuG.-C. WuG. Yang and L.-L. Huang, Continuous time random walk to a general fractional Fokker–Planck equation on fractal media, European Physical Journal: Special Topics, 230 (2021), 3927-3933. 
    [20] E. HeinsaluM. PatriarcaI. Goychuk and P. Hänggi, Use and abuse of a fractional Fokker–Planck dynamics for time-dependent driving, Physical Review Letters, 99 (2007), 120602.  doi: 10.1103/PhysRevLett.99.120602.
    [21] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin-New York, 1981.
    [22] C. HuangK. N. Le and M. Stynes, A new analysis of a numerical method for the time-fractional Fokker–Planck equation with general forcing, IMA Journal of Numerical Analysis, 40 (2020), 1217-1240.  doi: 10.1093/imanum/drz006.
    [23] B. Jin and Z. Zhou, Numerical Treatment and Analysis of Time-Fractional Evolution Equations, vol. 214 of Applied Mathematical Sciences, Springer Nature, 2023. doi: 10.1007/978-3-031-21050-1.
    [24] U. Khristenko and B. Wohlmuth, Solving time-fractional differential equations via rational approximation, IMA Journal of Numerical Analysis, 43 (2023), 1263-1290.  doi: 10.1093/imanum/drac022.
    [25] K. N. LeW. McLean and K. Mustapha, Numerical solution of the time-fractional Fokker–Planck equation with general forcing, SIAM Journal on Numerical Analysis, 54 (2016), 1763-1784.  doi: 10.1137/15M1031734.
    [26] K. N. Le, W. McLean and K. Mustapha, A semidiscrete finite element approximation of a time-fractional Fokker–Planck equation with nonsmooth initial data, SIAM Journal on Scientific Computing, 40 (2018), A3831-A3852. doi: 10.1137/17M1125261.
    [27] K. N. LeW. McLean and M. Stynes, Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing, Communications on Pure & Applied Analysis, 18 (2019), 2765-2787.  doi: 10.3934/cpaa.2019124.
    [28] K.-N. Le and M. Stynes, An $\alpha$-robust semidiscrete finite element method for a Fokker–Planck initial-boundary value problem with variable-order fractional time derivative, Journal of Scientific Computing, 86 (2021), 1-16.  doi: 10.1007/s10915-020-01375-x.
    [29] L. Li and J.-G. Liu, Some compactness criteria for weak solutions of time fractional PDEs, SIAM Journal on Mathematical Analysis, 50 (2018), 3963-3995.  doi: 10.1137/17M1145549.
    [30] M. Magdziarz, Stochastic representation of subdiffusion processes with time-dependent drift, Stochastic Processes and their Applications, 119 (2009), 3238-3252.  doi: 10.1016/j.spa.2009.05.006.
    [31] M. MagdziarzA. Weron and J. Klafter, Equivalence of the fractional Fokker–Planck and subordinated langevin equations: The case of a time-dependent force, Physical Review Letters, 101 (2008), 210601.  doi: 10.1103/PhysRevLett.101.210601.
    [32] W. McLean and K. Mustapha, Uniform stability for a spatially discrete, subdiffusive Fokker–Planck equation, Numerical Algorithms, 89 (2022), 1441-1463.  doi: 10.1007/s11075-021-01160-3.
    [33] W. McLeanK. MustaphaR. Ali and O. Knio, Well-posedness of time-fractional advection-diffusion-reaction equations, Fractional Calculus and Applied Analysis, 22 (2019), 918-944.  doi: 10.1515/fca-2019-0050.
    [34] W. McLeanK. MustaphaR. Ali and O. M. Knio, Regularity theory for time-fractional advection-diffusion-reaction equations, Computers & Mathematics with Applications, 79 (2020), 947-961.  doi: 10.1016/j.camwa.2019.08.008.
    [35] R. MetzlerE. Barkai and J. Klafter, Deriving fractional Fokker–Planck equations from a generalised master equation, EPL (Europhysics Letters), 46 (1999), 431-436.  doi: 10.1209/epl/i1999-00279-7.
    [36] R. MetzlerE. Barkai and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker–Planck equation approach, Physical Review Letters, 82 (1999), 3563-3567.  doi: 10.1103/PhysRevLett.82.3563.
    [37] R. Metzler and T. F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation, Chemical Physics, 284 (2002), 67-90. 
    [38] K. MustaphaO. M. Knio and O. P. L. Maitre, A second-order accurate numerical scheme for a time-fractional Fokker–Planck equation, IMA Journal of Numerical Analysis, 43 (2022), 2115-2136.  doi: 10.1093/imanum/drac031.
    [39] K. M. Owolabi and A. Atangana, Numerical Methods for Fractional Differentiation, Springer, Singapore, 2019. doi: 10.1007/978-981-15-0098-5.
    [40] L. Peng and Y. Zhou, The existence of mild and classical solutions for time fractional Fokker–Planck equations, Monatshefte fur Mathematik, 199 (2022), 377-410.  doi: 10.1007/s00605-022-01710-4.
    [41] I. Petráš, Handbook of Fractional Calculus with Applications: Applications in Control, vol. 6, De Gruyter, 2019.
    [42] L. Pinto and E. Sousa, Numerical solution of a time-space fractional Fokker–Planck equation with variable force field and diffusion, Communications in Nonlinear Science and Numerical Simulation, 50 (2017), 211-228.  doi: 10.1016/j.cnsns.2017.03.004.
    [43] T. SandevA. ChechkinH. Kantz and R. Metzler, Diffusion and Fokker–Planck–Smoluchowski equations with generalized memory kernel, Fractional Calculus and Applied Analysis, 18 (2015), 1006-1038.  doi: 10.1515/fca-2015-0059.
    [44] J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica Pura ed Applicata, 146 (1987), 65-96.  doi: 10.1007/BF01762360.
    [45] I. M. SokolovA. Blumen and J. Klafter, Dynamics of annealed systems under external fields: CTRW and the fractional Fokker–Planck equations, EPL (Europhysics Letters), 56 (2001), 175-180.  doi: 10.1209/epl/i2001-00503-6.
    [46] I. M. Sokolov and J. Klafter, Field-induced dispersion in subdiffusion, Physical Review Letters, 97 (2006), 140602.  doi: 10.1103/PhysRevLett.97.140602.
    [47] V. E. Tarasov, Handbook of Fractional Calculus with Applications: Applications in Physics, Part A, vol. 4, De Gruyter, 2019.
    [48] V. Vergara and R. Zacher, Lyapunov functions and convergence to steady state for differential equations of fractional order, Mathematische Zeitschrift, 259 (2008), 287-309.  doi: 10.1007/s00209-007-0225-1.
    [49] V. Vergara and R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods, SIAM Journal on Mathematical Analysis, 47 (2015), 210-239.  doi: 10.1137/130941900.
    [50] A. WeronM. Magdziarz and K. Weron, Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker–Planck equation, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77 (2008), 036704.  doi: 10.1103/PhysRevE.77.036704.
    [51] P. WittboldP. Wolejko and R. Zacher, Bounded weak solutions of time-fractional porous medium type and more general nonlinear and degenerate evolutionary integro-differential equations, Journal of Mathematical Analysis and Applications, 499 (2021), 125007.  doi: 10.1016/j.jmaa.2021.125007.
    [52] S. Yan and M. Cui, Finite difference scheme for the time-fractional Fokker–Planck equation with time- and space-dependent forcing, International Journal of Computer Mathematics, 96 (2019), 379-398.  doi: 10.1080/00207160.2018.1461214.
    [53] R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialaj Ekvacioj, 52 (2009), 1-18.  doi: 10.1619/fesi.52.1.
  • 加载中

Figures(7)

SHARE

Article Metrics

HTML views(987) PDF downloads(182) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return