\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nodal solutions for critical Robin double phase problems with variable exponent

  • *Corresponding author: Patrick Winkert

    *Corresponding author: Patrick Winkert
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study a nonlinear double phase problem with variable exponent and critical growth on the boundary. The problem has in the reaction the combined effects of a Carathéodory perturbation defined only locally and of a critical term. The presence of the critical term does not permit to apply results of the critical point theory to the corresponding energy functional. Thus, we use appropriate cut-off functions and truncation techniques to work on an auxiliary coercive problem. In this way, we can use variational tools to get a sequence of sign changing solutions to our main problem. Further, we show that such a sequence converges to $ 0 $ in $ L^{\infty} $ and in the Musielak-Orlicz Sobolev space.

    Mathematics Subject Classification: 35A01, 35D30, 35J60, 35J62, 35J66.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Aberqi, J. Bennouna, O. Benslimane and M. A. Ragusa, Existence results for double phase problem in Sobolev-Orlicz spaces with variable exponents in complete manifold, Mediterr. J. Math., 19 (2022), Paper No. 158, 19 pp. doi: 10.1007/s00009-022-02097-0.
    [2] K. S. Albalawi, N. H. Alharthi and F. Vetro, Gradient and parameter dependent Dirichlet $(p(x), q(x))$-Laplace type problem, Mathematics, 10 (2022), Article number 1336.
    [3] V. Ambrosio and T. Isernia, A multiplicity result for a $(p, q)$-Schrödinger-Kirchhoff type equation, Ann. Mat. Pura Appl., 201 (2022), 943-984.  doi: 10.1007/s10231-021-01145-y.
    [4] V. Ambrosio and V. D. Rǎdulescu, Multiplicity of concentrating solutions for $(p, q)$-Schrödinger equations with lack of compactness, to appear, Israel J. Math..
    [5] V. Ambrosio and D. Repovš, Multiplicity and concentration results for a $(p, q)$-Laplacian problem in $\mathbb{R}^N$, Z. Angew. Math. Phys., 72 (2021), Paper No. 33, 33 pp. doi: 10.1007/s00033-020-01466-7.
    [6] A. Bahrouni, V. D. Rǎdulescu and P. Winkert, Double phase problems with variable growth and convection for the Baouendi-Grushin operator, Z. Angew. Math. Phys., 71 (2020), Paper No. 183, 15 pp. doi: 10.1007/s00033-020-01412-7.
    [7] Y. BaiN. S. Papageorgiou and S. Zeng, A singular eigenvalue problem for the Dirichlet $(p, q)$-Laplacian, Math. Z., 300 (2022), 325-345.  doi: 10.1007/s00209-021-02803-w.
    [8] P. BaroniM. Colombo and G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal., 121 (2015), 206-222.  doi: 10.1016/j.na.2014.11.001.
    [9] P. BaroniM. Colombo and G. Mingione, Non-autonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347-379.  doi: 10.1090/spmj/1392.
    [10] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 62, 48 pp. doi: 10.1007/s00526-018-1332-z.
    [11] J. Cen, A. A. Khan, D. Motreanu and S. Zeng, Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems, Inverse Problems, 38 (2022), Paper No. 065006, 28 pp. doi: 10.1088/1361-6420/ac61a5.
    [12] F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195 (2016), 1917-1959.  doi: 10.1007/s10231-015-0542-7.
    [13] Á. Crespo-BlancoL. GasińskiP. Harjulehto and P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differential Equations, 323 (2022), 182-228.  doi: 10.1016/j.jde.2022.03.029.
    [14] Á. Crespo-BlancoN. S. Papageorgiou and P. Winkert, Parametric superlinear double phase problems with singular term and critical growth on the boundary, Math. Methods Appl. Sci., 45 (2022), 2276-2298.  doi: 10.1002/mma.7924.
    [15] C. De Filippis and G. Mingione, Lipschitz bounds and nonautonomous integrals, Arch. Ration. Mech. Anal., 242 (2021), 973-1057.  doi: 10.1007/s00205-021-01698-5.
    [16] L. Diening, P. Harjulehto, P. Hästö and M. R$\mathring{{\text{u}}}$žička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.
    [17] C. Farkas and P. Winkert, An existence result for singular Finsler double phase problems, J. Differential Equations, 286 (2021), 455-473.  doi: 10.1016/j.jde.2021.03.036.
    [18] L. Gasiński and N. S. Papageorgiou, Constant sign and nodal solutions for superlinear double phase problems, Adv. Calc. Var., 14 (2021), 613-626.  doi: 10.1515/acv-2019-0040.
    [19] L. Gasiński and P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal., 195 (2020), 111739, 9 pp. doi: 10.1016/j.na.2019.111739.
    [20] L. Gasiński and P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differential Equations, 268 (2020), 4183-4193.  doi: 10.1016/j.jde.2019.10.022.
    [21] L. Gasiński and P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differential Equations, 274 (2021), 1037-1066.  doi: 10.1016/j.jde.2020.11.014.
    [22] P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Springer, Cham, 2019. doi: 10.1007/978-3-030-15100-3.
    [23] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Kluwer Academic Publishers, Dordrecht, 1997.
    [24] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.  doi: 10.1016/j.jfa.2005.04.005.
    [25] I. H. Kim, Y.-H. Kim, M. W. Oh and S. Zeng, Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent, Nonlinear Anal. Real World Appl., 67 (2022), Paper No. 103627, 25 pp. doi: 10.1016/j.nonrwa.2022.103627.
    [26] S. Leonardi and N. S. Papageorgiou, Anisotropic Dirichlet double phase problems with competing nonlinearities, Rev. Mat. Complut., 36 (2023), 469-490.  doi: 10.1007/s13163-022-00432-3.
    [27] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219.  doi: 10.1016/0362-546X(88)90053-3.
    [28] W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations, 265 (2018), 4311-4334.  doi: 10.1016/j.jde.2018.06.006.
    [29] Z. Liu and N. S. Papageorgiou, Asymptotically vanishing nodal solutions for critical double phase problems, Asymptot. Anal., 124 (2021), 291-302.  doi: 10.3233/asy-201645.
    [30] N. S. Papageorgiou and V. D. Rǎdulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.  doi: 10.1016/j.jde.2014.01.010.
    [31] N. S. PapageorgiouV. D. Rǎdulescu and D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst., 37 (2017), 2589-2618.  doi: 10.3934/dcds.2017111.
    [32] N. S. Papageorgiou, V. D. Rǎdulescu and D. D. Repovš, Nonlinear Analysis–Theory and Methods, Springer, Cham, 2019. doi: 10.1007/978-3-030-03430-6.
    [33] N. S. Papageorgiou and C. Vetro, Superlinear $(p(z), q(z))$-equations, Complex Var. Elliptic Equ., 64 (2019), 8-25.  doi: 10.1080/17476933.2017.1409743.
    [34] N. S. PapageorgiouC. Vetro and F. Vetro, Solutions for parametric double phase Robin problems, Asymptot. Anal., 121 (2021), 159-170. 
    [35] N. S. Papageorgiou, F. Vetro and P. Winkert, Sign changing solutions for critical double phase problems with variable exponent, preprint, 2023.
    [36] N. S. Papageorgiou and P. Winkert, Applied Nonlinear Functional Analysis, De Gruyter, Berlin, 2018.
    [37] K. Perera and M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023, 14 pp. doi: 10.1142/S0219199717500237.
    [38] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.
    [39] F. Vetro and P. Winkert, Existence, uniqueness and asymptotic behavior of parametric anisotropic $(p, q)$-equations with convection, Appl. Math. Optim., 86 (2022), Paper No. 18, 18 pp. doi: 10.1007/s00245-022-09892-x.
    [40] F. Vetro and P. Winkert, Constant sign solutions for double phase problems with variable exponents, Appl. Math. Lett., 135 (2023), Paper No. 108404, 7 pp. doi: 10.1016/j.aml.2022.108404.
    [41] S. Zeng, Y. Bai, L. Gasiński and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations, 59 (2020), Paper No. 176, 18 pp. doi: 10.1007/s00526-020-01841-2.
    [42] S. ZengV. D. Rǎdulescu and P. Winkert, Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions, SIAM J. Math. Anal., 54 (2022), 1898-1926.  doi: 10.1137/21M1441195.
    [43] S. ZengV. D. Rǎdulescu and P. Winkert, Double phase obstacle problems with variable exponent, Adv. Differential Equations, 27 (2022), 611-645. 
    [44] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710. 
    [45] V. V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys., 3 (1995), 249-269. 
    [46] V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci., 173 (2011), 463-570.  doi: 10.1007/s10958-011-0260-7.
  • 加载中
SHARE

Article Metrics

HTML views(1425) PDF downloads(333) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return