In this paper we consider the model of phase relaxation introduced in [22], where an asymptotic analysis is performed toward an integral formulation of the Stefan problem when the relaxation parameter approaches zero. Assuming the natural physical assumption that the initial condition of the phase is constrained, but taking more general boundary conditions, we prove that the solution of this relaxed model converges in a stronger way to the solution of the classical weak Stefan problem.
Citation: |
[1] | R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. |
[2] | C. Baiocchi, Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert, Ann. Mat. Pura Appl., 76 (1967), 233-304. doi: 10.1007/BF02412236. |
[3] | C. Baiocchi, Sur un problème à frontière libre traduisant le filtrage de liquides à travers le mileux poreux, C. R. Acad. Sci. Paris, Série A, 273 (1971), 1215-1217. |
[4] | H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Mathematics Studies, No. 5. Notas de Matemática, No. 50. North-Holland Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1973. |
[5] | P. Colli and M. Grasselli, Phase transition problems in materials with memory, J. Integral Equations Appl., 5 (1993), 1-22. doi: 10.1216/jiea/1181075724. |
[6] | P. Colli and V. Recupero, Convergence to the Stefan problem of the phase relaxation problem with Cattaneo heat flux law, J. Evol. Equ., 2 (2002), 177-195. doi: 10.1007/s00028-002-8085-y. |
[7] | A. Damlamian, Some results on the multi-phase Stefan problem, Comm. Partial Differential Equations, 2 (1977), 1017-1044. doi: 10.1080/03605307708820053. |
[8] | A. Damlamian, N. Kenmochi and N. Sato, Subdifferential operator approach to a class of nonlinear systems for Stefan problems with phase relaxation, Nonlinear Anal., 23 (1994), 115-142. doi: 10.1016/0362-546X(94)90255-0. |
[9] | G. Duvaut, Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degrés), C. R. Acad. Sci. Paris, Série I, 276-A (1973), 1461-1463. |
[10] | M. Frémond, Variational formulation of the Stefan problem, coupled Stefan problem, frost propagation in porous media, Proc. Conf. Computational Methods in Nonlinear Mechanics, University of Texas, Austin, (1974), 341-349. |
[11] | P. Girsvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 34. Pitman, Boston, 1985. |
[12] | S. Lang, Real and Functional Analysis, Third Edition, Graduate Texts in Mathematics, 142. Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0897-6. |
[13] | J.-L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg, 1972. |
[14] | V. Recupero, Global solution to a Penrose-Fife model with special heat flux law and memory effects, Adv. Math. Sci. Appl., 12 (2002), 89-114. |
[15] | V. Recupero, Some results on a new model of phase relaxation, Math. Models Meth. Appl. Sci., 12 (2002), 431-444. doi: 10.1142/S0218202502001726. |
[16] | V. Recupero, Convergence to the Stefan problem of the hyperbolic phase relaxation problem and error estimates, Mathematical Models and Methods for Smart Materials, Ser. Adv. Math. Appl. Sci., World Sci. Publ., River Edge, NJ, 62 (2002), 273-282. doi: 10.1142/9789812776273_0027. |
[17] | V. Recupero, On a model of phase relaxation for the hyperbolic Stefan problem, J. Math. Anal. Appl., 300 (2004), 387-407. doi: 10.1016/j.jmaa.2004.06.045. |
[18] | R. E. Showalter and N. J. Walkington, A hyperbolic Stefan problem, Quart. Appl. Math., 45 (1987), 769-781. doi: 10.1090/qam/917025. |
[19] | R. E. Showalter and N. J. Walkington, A hyperbolic Stefan problem, Rocky Mountain J. Math., 21 (1991), 787-797. doi: 10.1216/rmjm/1181072967. |
[20] | A. Visintin, Stefan problem with phase relaxation, IMA J. Appl. Math., 34 (1985), 225-245. doi: 10.1093/imamat/34.3.225. |
[21] | A. Visintin, Models of Phase Transitions, Progress in Nonlinear Differential Equations and their Applications, 28. Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4078-5. |
[22] | A. Visintin, Models of phase relaxation, Diff. Integral Eq., 14 (2001), 1469-1486. |