\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Impact of interaction forces in first order many-agent systems for swarm manufacturing

  • *Corresponding author: Mattia Zanella

    *Corresponding author: Mattia Zanella
Abstract / Introduction Full Text(HTML) Figure(9) Related Papers Cited by
  • We study the large time behavior of a system of interacting agents modeling the relaxation of a large swarm of robots, whose task is to uniformly cover a portion of the domain by communicating with each other in terms of their distance. To this end, we generalize a related result for a Fokker-Planck-type model with a nonlocal discontinuous drift and constant diffusion, recently introduced by three of the authors, of which the steady distribution is explicitly computable. For this new nonlocal Fokker-Planck equation, existence, uniqueness and positivity of a global solution are proven, together with precise equilibration rates of the solution towards its quasi-stationary distribution. Numerical experiments are designed to verify the theoretical findings and explore possible extensions to more complex scenarios.

    Mathematics Subject Classification: Primary: 35Q84, 35Q70, 62B10; Secondary: 35Q94, 93C85.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Left: steady state distribution for the 1D problem with $ \delta = 0.5 $ and $ x_0 = 0 $. Right: steady state distribution for the 2D problem with $ \delta = \sqrt{\pi^{-1}} $ and $ \mathbf{x}_0 = (0, 0) $. In both cases we fixed several values of $ m_2>0 $ and $ \delta>0 $

    Figure 2.  Test 1a. Evolution of the reconstructed distribution functions of the particles' systems (26)-(27) given by $ f^{N}_1(x) $, $ f^{N}_2(x) $ in the case $ P\equiv1 $ at different times $ t = 1, 5, 10, 20 $ and for $ \lambda = 0.2, 0.8 $. We considered an Euler-Maruyama scheme with $ N = 10^5 $ and $ \Delta t = 10^{-2} $, the histograms have been obtained in the interval $ [-5, 5] $ with $ N_x = 101 $ gridpoints and the target domain is $ D = \{x \in \mathbb R: |x-x_0|\le \frac{1}{2}\} $, $ x_0 = 0 $ and $ m_1, \sigma^2>0 $ solution to the system (5) in such a way $ m_2 = 0.8 $ and $ \delta = \frac{1}{2} $

    Figure 3.  Test 1a. Comparison between the reconstructed distribution functions $ f_1^{N}(x, t) $ (top row) and $ f_2^{N}(x, t) $ (bottom row) for increasing $ N = 10^{4} $, $ N = 10^5 $ of the particles' systems (26)-(27) in the case $ P\equiv 1 $, with the numerical solution of Fokker-Planck models defined in (1)-(16) and denoted by $ f_1(x, t) $, $ f_2(x, t) $. We considered $ \lambda = 0.2 $, a discretization of the interval $ [-5, 5] $ obtained with $ N_x = 101 $ gridpoints. The target domain is $ D = \{x \in \mathbb R: |x-x_0|\le \frac{1}{2}\} $, $ x_0 = 0 $ and $ m_1, \sigma^2>0 $ solution to (5) with $ m_2 = 0.8 $ and $ \delta = \frac{1}{2} $. Initial condition defined in (28)

    Figure 4.  Test 1b. Comparison between the reconstructed distribution function $ f^{N}(x, t) $ for increasing $ N = 10^{4} $, $ N = 10^5 $ of the particles' systems (26) in the case $ P(x, y) $ in (29), with the numerical solution of Fokker-Planck models defined in (1) and denoted by $ f(x, t) $. We considered $ \lambda = 0.2 $, a discretization of the interval $ [-5, 5] $ obtained with $ N_x = 101 $ gridpoints. The target domain is $ D = \{x \in \mathbb R: |x-x_0|\le \frac{1}{2}\} $, $ x_0 = 0 $ and $ \sigma^2 = 0.2 $ of Figure 3 and $ \delta = \frac{1}{2} $. Initial condition defined in (28)

    Figure 5.  Test 1b. Evolution of the particles' mean position. We denote with $ \bar u_1(t) $ the mean position obtained from (26), with $ \bar u_2(t) $ the one obtained from (27) and with $ \bar u_3(t) $ the one obtained with space dependent interactions $ P(x, y) $ (29) in (26). In all the tests we considered $ N = 10^4 $ particles evolving over the time interval $ [0, 10] $ with $ \Delta t = 10^{-2} $. The target domain is $ D = \{x \in \mathbb R: |x-x_0|\le \frac{1}{2}\} $ and we fixed the relevant parameters of Figure 4. We considered the case $ \lambda = 0.2 $ (left) and $ \lambda = 0.8 $ (right). Initial distribution defined in (28)

    Figure 6.  Test 1c. Top row: evolution of the particles' distribution $ f^N( \mathbf{x}, t) $ at times $ t = 0, 1, 10 $ obtained from (26) with $ P\equiv1 $. Second row: evolution o the numerical solution of the Fokker-Planck equation (16) over the same grid. Bottom row: evolution of the marginal densities of $ f^N( \mathbf{x}, t) $ and $ f( \mathbf{x}, t) $. We considered as target domain $ D = \{ \mathbf{x} \in \mathbb R^2: | \mathbf{x}- \mathbf{x}_0|\le 1\} $, $ \mathbf{x}_0 = (0, 0) $, $ \sigma^2 = 0.2 $ and $ \lambda = 0.2 $, the nonconstant diffusion function $ \kappa( \mathbf{x}, \tilde {\mathbf{x}}_0) $ has been defined in (15). We introduced a grid of $ N_x = 81 $ gridpoints in $ [-5, 5] $, time discretization of $ [0, 10] $ with $ \Delta t = 10^{-2} $. Initial condition given in (30)

    Figure 7.  Test 1c. Top row: evolution of the particles' distribution $ f^N( \mathbf{x}, t) $ at times $ t = 0, 1, 10 $ obtained from (26) with $ P( \mathbf{x}, \mathbf y) $ in (29) and $ N = 10^4 $ particles. Second row: evolution o the numerical solution of the Fokker-Planck equation (1) over the same grid. Bottom row: evolution of the marginal densities of $ f^N( \mathbf{x}, t) $ and $ f( \mathbf{x}, t) $. We considered as target domain $ D = \{ \mathbf{x} \in \mathbb R^2: | \mathbf{x}- \mathbf{x}_0|\le 1\} $, $ \mathbf{x}_0 = (0, 0) $, $ \sigma^2 = 0.2 $ and $ \lambda = 0.2 $. We introduced a grid of $ N_x = 81 $ gridpoints in $ [-5, 5] $, time discretization of $ [0, 10] $ with $ \Delta t = 10^{-2} $. Initial condition given in (30)

    Figure 8.  Test 2. Left: evolution of the relative entropy functional $ H(f|f^\infty)(t) $ obtained from (16), $ d = 1 $, and analytical equilibrium $ f^\infty( \mathbf{x}) $ defined in (4). Right: evolution of the entropy functional $ H(f|f^ \rm{ref}_\lambda)(t) $ for the Fokker-Planck equation (1), $ d = 1 $, with space-dependent $ P(x, y) $ defined in (29). The reference solution $ f^ \rm{ref}_\lambda(x, T) $ have been obtained for a discrertization of $ [-5, 5] $ with $ N_x = 801 $ gridpoints and $ T = 50 $. In both cases $ \Delta t = \frac{\Delta x^2}{10} $ and the initial distribution is (33)

    Figure 9.  Test 2. Left: evolution of the relative entropy functional $ H(f|f^\infty)(t) $ obtained from (16), $ d = 2 $, and analytical equilibrium $ f^\infty( \mathbf{x}) $ defined in (4). Right: evolution of the entropy functional $ H(f|f^ \rm{ref}_\lambda)(t) $ for the Fokker-Planck equation (1), $ d = 1 $, with space-dependent $ P( \mathbf{x}, \mathbf{y}) $ defined in (29). The reference solution $ f^ \rm{ref}_\lambda( \mathbf{x}, T) $ have been obtained for a discrertization of $ [-5, 5] \times [-5, 5] $ with $ N_x = 81 $ gridpoints in each space direction and $ T = 50 $. In both cases $ \Delta t = \frac{\Delta x^2}{10} $ and the initial distribution is (33)

  • [1] E. Ackerman, Mobile Robots Cooperate to 3D Print Large Structures, IEEE Spectrum: Technology, Engineering, and Science News, 2018.
    [2] H. AhnJ. ByeonS.-Y. Ha and J. Yoon, Asymptotic tracking of a point cloud moving on Riemannian manifolds, SIAM J. Contr. Optim, 61 (2023), 2379-2406.  doi: 10.1137/22M1523078.
    [3] H. AhnS.-Y. HaD. KimF. W. Schlöder and W. Shim, The mean-field limit of the Cucker-Smale model on complete Riemannian manifolds, Quart. Appl. Math., 80 (2022), 403-450.  doi: 10.1090/qam/1613.
    [4] G. Albi and L. Pareschi, Modeling of self-organized systems interacting with a few individuals: From microscopic to macroscopic dynamics, Appl. Math. Lett., 26 (2013), 397-401.  doi: 10.1016/j.aml.2012.10.011.
    [5] L. Arkeryd, On the Boltzmann equation. Part I: Existence, Arch. Ration. Mech. Anal., 45 (1972), 1-16.  doi: 10.1007/BF00253392.
    [6] F. Auricchio, A continuous model for the simulation of manufacturing swarm robotics, Comput. Mech., 70 (2022), 155-162.  doi: 10.1007/s00466-022-02160-3.
    [7] F. Auricchio, G. Toscani and M. Zanella, Fokker-Planck modeling of many-agent systems in swarm manufacturing: Asymptotic analysis and numerical results, Commun. Math. Sci., in press.
    [8] F. Auricchio, G. Toscani and M. Zanella, Trends to equilibrium for a nonlocal Fokker-Planck equation, Applied Math. Letters, 145 (2023), Paper No. 108746, 8 pp. doi: 10.1016/j.aml.2023.108746.
    [9] F. BolleyJ. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: non-Lipschitz forces and swarming, Math. Mod. Meth. Appl. Sci., 21 (2011), 2179-2210.  doi: 10.1142/S0218202511005702.
    [10] F. BolleyA. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, M2AN Math. Model. Numer. Anal., 44 (2010), 867-884.  doi: 10.1051/m2an/2010045.
    [11] M. CaponigroM. FornasierB. Piccoli and E. Trélat, Sparse stabilization and optimal control of the Cucker-Smale model, Math. Control Relat. Fields, 3 (2013), 447-466.  doi: 10.3934/mcrf.2013.3.447.
    [12] J. A. CarrilloM. FornasierJ. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.  doi: 10.1137/090757290.
    [13] J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, G. Naldi, L. Pareschi, G. Toscani, (eds). Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2010,297-336. doi: 10.1007/978-0-8176-4946-3_12.
    [14] A. CavagnaA. CimarelliI. GiardinaG. ParisiR. SantagatiF. Stefanini and M. Viale, Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci. U.S.A., 107 (2010), 11865-11870.  doi: 10.1073/pnas.1005766107.
    [15] Y.-P. ChoiD. KaliseJ. Peszek and A. A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn. Systems, 18 (2019), 1954-1981.  doi: 10.1137/19M1241799.
    [16] Y.-P. Choi, D. Oh and O. Tse, Controlled pattern formation of stochastic Cucker-Smale systems with network structures, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106474, 15 pp. doi: 10.1016/j.cnsns.2022.106474.
    [17] N. Correll and H. Hamann., Probabilistic modeling of swarming systems, in Springer Handbook of Computational Intelligence, Springer, Berlin, Heidelberg, 2015, 1423-1432. doi: 10.1007/978-3-662-43505-2_74.
    [18] I. D. CouzinJ. KrauseR. JamesG. D. Ruxton and N. R. Franks, Collective memory and spatial sorting in animal groups, J. Theor. Biol., 218 (2002), 1-11.  doi: 10.1006/jtbi.2002.3065.
    [19] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.
    [20] P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Mod. Meth. Appl. Scie., 18 (2008), 1193-1215.  doi: 10.1142/S0218202508003005.
    [21] M. R. D'OrsognaY. L. ChuangA. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006), 104-302. 
    [22] S. Duncan, G. Estrada-Rodriguez, J. Stocek, M. Dragone, P. Vargas and H. Gimperlein, Efficient quantitative assessment of robot swarms: Coverage and targeting Levy strategies, Bioinspir. Biomim., 17 (2022). doi: 10.1088/1748-3190/ac57f0.
    [23] G. FurioliA. PulvirentiE. Terraneo and G. Toscani, Fokker-Planck equations in the modelling of socio-economic phenomena, Math. Models Methods Appl. Scie., 27 (2017), 115-158.  doi: 10.1142/S0218202517400048.
    [24] S.-Y. HaJ. JungJ. KimJ. Park and X. Zhang, Emergent behaviors of the swarmalator model for position-phase aggregation, Math. Mod. Meth. Appl. Sci., 29 (2019), 2225-2269.  doi: 10.1142/S0218202519500453.
    [25] S.-Y. HaD. Kim and F. W. Schlöder, Emergent behaviors of Cucker-Smale flocks on Riemannian manifolds, IEEE Trans. Automat. Control, 66 (2021), 3020-3035.  doi: 10.1109/TAC.2020.3014096.
    [26] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.  doi: 10.3934/krm.2008.1.415.
    [27] H. Hammann, Swarm Robotics: A Formal Approach, Springer Cham, 2018. doi: 10.1007/978-3-319-74528-2.
    [28] H. Hamann and H. Wörn, A framework of space-time continuous models for algorithm design in swarm robotics, Swarm Intelligence, 2 (2008), 209-239.  doi: 10.1007/s11721-008-0015-3.
    [29] A. J. KingS. J. PortugalD. StrömbomR. P. MannJ. A. CarrilloD. KaliseG. de CroonH. BarnettP. ScerriR. GroßD. R. Chadwick and M. Papadopoulou, Biologically inspired herding of animal groups by robots, Math. Ecol. Evol, 14 (2023), 478-486.  doi: 10.1111/2041-210X.14049.
    [30] C. Le Bris and P.-L. Lions, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Commun. Partial Differ. Equ., 33 (2008), 1272-1317.  doi: 10.1080/03605300801970952.
    [31] N. Loy and M. Zanella, Structure preserving schemes for Fokker-Planck equations with nonconstant diffusion matrices, Math. Comput. Simul., 188 (2021), 342-362.  doi: 10.1016/j.matcom.2021.04.018.
    [32] S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean- Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995), Lecture Notes in Mathematics. Springer, Berlin, 1996, 42-95. doi: 10.1007/BFb0093177.
    [33] S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577-621.  doi: 10.1137/120901866.
    [34] F. Otto and C. Villani., Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.  doi: 10.1006/jfan.1999.3557.
    [35] N. OxmanJ. Duro-RoyoS. KeatingB. Peters and E. Tsai, Towards robotic swarm printing, Architectural Design, 84 (2014), 108-115.  doi: 10.1002/ad.1764.
    [36] L. Pareschi and  G. ToscaniInteracting Multiagent Systems: Kinetic Equations & Monte Carlo Methods, Oxford University Press, 2013. 
    [37] L. Pareschi and M. Zanella, Structure preserving schemes for nonlinear Fokker-Planck equations and applications, J. Sci. Comput., 74 (2018), 1575-1600.  doi: 10.1007/s10915-017-0510-z.
    [38] R. Temam, Sur la résolution exacte et approchée d'un problème hyperbolique non linéaire de T. Carleman, Arch. Ration. Mech. Anal., 35 (1969), 351-362.  doi: 10.1007/BF00247682.
    [39] G. Toscani, Entropy dissipation and the rate of convergence to equilibrium for the Fokker-Planck equation, Quart. Appl. Math., 57 (1999), 521-541.  doi: 10.1090/qam/1704435.
    [40] G. Toscani and C. Villani, On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Statist. Phys., 98 (2000), 1279-1309.  doi: 10.1023/A:1018623930325.
    [41] G. Toscani and M. Zanella, On a class of Fokker-Planck equations with subcritical confinement, Rend. Lincei Mat. Appl., 32 (2021), 471-497.  doi: 10.4171/RLM/944.
    [42] T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.
  • 加载中

Figures(9)

SHARE

Article Metrics

HTML views(1217) PDF downloads(197) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return