We study the large time behavior of a system of interacting agents modeling the relaxation of a large swarm of robots, whose task is to uniformly cover a portion of the domain by communicating with each other in terms of their distance. To this end, we generalize a related result for a Fokker-Planck-type model with a nonlocal discontinuous drift and constant diffusion, recently introduced by three of the authors, of which the steady distribution is explicitly computable. For this new nonlocal Fokker-Planck equation, existence, uniqueness and positivity of a global solution are proven, together with precise equilibration rates of the solution towards its quasi-stationary distribution. Numerical experiments are designed to verify the theoretical findings and explore possible extensions to more complex scenarios.
Citation: |
Figure 2. Test 1a. Evolution of the reconstructed distribution functions of the particles' systems (26)-(27) given by $ f^{N}_1(x) $, $ f^{N}_2(x) $ in the case $ P\equiv1 $ at different times $ t = 1, 5, 10, 20 $ and for $ \lambda = 0.2, 0.8 $. We considered an Euler-Maruyama scheme with $ N = 10^5 $ and $ \Delta t = 10^{-2} $, the histograms have been obtained in the interval $ [-5, 5] $ with $ N_x = 101 $ gridpoints and the target domain is $ D = \{x \in \mathbb R: |x-x_0|\le \frac{1}{2}\} $, $ x_0 = 0 $ and $ m_1, \sigma^2>0 $ solution to the system (5) in such a way $ m_2 = 0.8 $ and $ \delta = \frac{1}{2} $
Figure 3. Test 1a. Comparison between the reconstructed distribution functions $ f_1^{N}(x, t) $ (top row) and $ f_2^{N}(x, t) $ (bottom row) for increasing $ N = 10^{4} $, $ N = 10^5 $ of the particles' systems (26)-(27) in the case $ P\equiv 1 $, with the numerical solution of Fokker-Planck models defined in (1)-(16) and denoted by $ f_1(x, t) $, $ f_2(x, t) $. We considered $ \lambda = 0.2 $, a discretization of the interval $ [-5, 5] $ obtained with $ N_x = 101 $ gridpoints. The target domain is $ D = \{x \in \mathbb R: |x-x_0|\le \frac{1}{2}\} $, $ x_0 = 0 $ and $ m_1, \sigma^2>0 $ solution to (5) with $ m_2 = 0.8 $ and $ \delta = \frac{1}{2} $. Initial condition defined in (28)
Figure 4. Test 1b. Comparison between the reconstructed distribution function $ f^{N}(x, t) $ for increasing $ N = 10^{4} $, $ N = 10^5 $ of the particles' systems (26) in the case $ P(x, y) $ in (29), with the numerical solution of Fokker-Planck models defined in (1) and denoted by $ f(x, t) $. We considered $ \lambda = 0.2 $, a discretization of the interval $ [-5, 5] $ obtained with $ N_x = 101 $ gridpoints. The target domain is $ D = \{x \in \mathbb R: |x-x_0|\le \frac{1}{2}\} $, $ x_0 = 0 $ and $ \sigma^2 = 0.2 $ of Figure 3 and $ \delta = \frac{1}{2} $. Initial condition defined in (28)
Figure 5. Test 1b. Evolution of the particles' mean position. We denote with $ \bar u_1(t) $ the mean position obtained from (26), with $ \bar u_2(t) $ the one obtained from (27) and with $ \bar u_3(t) $ the one obtained with space dependent interactions $ P(x, y) $ (29) in (26). In all the tests we considered $ N = 10^4 $ particles evolving over the time interval $ [0, 10] $ with $ \Delta t = 10^{-2} $. The target domain is $ D = \{x \in \mathbb R: |x-x_0|\le \frac{1}{2}\} $ and we fixed the relevant parameters of Figure 4. We considered the case $ \lambda = 0.2 $ (left) and $ \lambda = 0.8 $ (right). Initial distribution defined in (28)
Figure 6. Test 1c. Top row: evolution of the particles' distribution $ f^N( \mathbf{x}, t) $ at times $ t = 0, 1, 10 $ obtained from (26) with $ P\equiv1 $. Second row: evolution o the numerical solution of the Fokker-Planck equation (16) over the same grid. Bottom row: evolution of the marginal densities of $ f^N( \mathbf{x}, t) $ and $ f( \mathbf{x}, t) $. We considered as target domain $ D = \{ \mathbf{x} \in \mathbb R^2: | \mathbf{x}- \mathbf{x}_0|\le 1\} $, $ \mathbf{x}_0 = (0, 0) $, $ \sigma^2 = 0.2 $ and $ \lambda = 0.2 $, the nonconstant diffusion function $ \kappa( \mathbf{x}, \tilde {\mathbf{x}}_0) $ has been defined in (15). We introduced a grid of $ N_x = 81 $ gridpoints in $ [-5, 5] $, time discretization of $ [0, 10] $ with $ \Delta t = 10^{-2} $. Initial condition given in (30)
Figure 7. Test 1c. Top row: evolution of the particles' distribution $ f^N( \mathbf{x}, t) $ at times $ t = 0, 1, 10 $ obtained from (26) with $ P( \mathbf{x}, \mathbf y) $ in (29) and $ N = 10^4 $ particles. Second row: evolution o the numerical solution of the Fokker-Planck equation (1) over the same grid. Bottom row: evolution of the marginal densities of $ f^N( \mathbf{x}, t) $ and $ f( \mathbf{x}, t) $. We considered as target domain $ D = \{ \mathbf{x} \in \mathbb R^2: | \mathbf{x}- \mathbf{x}_0|\le 1\} $, $ \mathbf{x}_0 = (0, 0) $, $ \sigma^2 = 0.2 $ and $ \lambda = 0.2 $. We introduced a grid of $ N_x = 81 $ gridpoints in $ [-5, 5] $, time discretization of $ [0, 10] $ with $ \Delta t = 10^{-2} $. Initial condition given in (30)
Figure 8. Test 2. Left: evolution of the relative entropy functional $ H(f|f^\infty)(t) $ obtained from (16), $ d = 1 $, and analytical equilibrium $ f^\infty( \mathbf{x}) $ defined in (4). Right: evolution of the entropy functional $ H(f|f^ \rm{ref}_\lambda)(t) $ for the Fokker-Planck equation (1), $ d = 1 $, with space-dependent $ P(x, y) $ defined in (29). The reference solution $ f^ \rm{ref}_\lambda(x, T) $ have been obtained for a discrertization of $ [-5, 5] $ with $ N_x = 801 $ gridpoints and $ T = 50 $. In both cases $ \Delta t = \frac{\Delta x^2}{10} $ and the initial distribution is (33)
Figure 9. Test 2. Left: evolution of the relative entropy functional $ H(f|f^\infty)(t) $ obtained from (16), $ d = 2 $, and analytical equilibrium $ f^\infty( \mathbf{x}) $ defined in (4). Right: evolution of the entropy functional $ H(f|f^ \rm{ref}_\lambda)(t) $ for the Fokker-Planck equation (1), $ d = 1 $, with space-dependent $ P( \mathbf{x}, \mathbf{y}) $ defined in (29). The reference solution $ f^ \rm{ref}_\lambda( \mathbf{x}, T) $ have been obtained for a discrertization of $ [-5, 5] \times [-5, 5] $ with $ N_x = 81 $ gridpoints in each space direction and $ T = 50 $. In both cases $ \Delta t = \frac{\Delta x^2}{10} $ and the initial distribution is (33)
[1] | E. Ackerman, Mobile Robots Cooperate to 3D Print Large Structures, IEEE Spectrum: Technology, Engineering, and Science News, 2018. |
[2] | H. Ahn, J. Byeon, S.-Y. Ha and J. Yoon, Asymptotic tracking of a point cloud moving on Riemannian manifolds, SIAM J. Contr. Optim, 61 (2023), 2379-2406. doi: 10.1137/22M1523078. |
[3] | H. Ahn, S.-Y. Ha, D. Kim, F. W. Schlöder and W. Shim, The mean-field limit of the Cucker-Smale model on complete Riemannian manifolds, Quart. Appl. Math., 80 (2022), 403-450. doi: 10.1090/qam/1613. |
[4] | G. Albi and L. Pareschi, Modeling of self-organized systems interacting with a few individuals: From microscopic to macroscopic dynamics, Appl. Math. Lett., 26 (2013), 397-401. doi: 10.1016/j.aml.2012.10.011. |
[5] | L. Arkeryd, On the Boltzmann equation. Part I: Existence, Arch. Ration. Mech. Anal., 45 (1972), 1-16. doi: 10.1007/BF00253392. |
[6] | F. Auricchio, A continuous model for the simulation of manufacturing swarm robotics, Comput. Mech., 70 (2022), 155-162. doi: 10.1007/s00466-022-02160-3. |
[7] | F. Auricchio, G. Toscani and M. Zanella, Fokker-Planck modeling of many-agent systems in swarm manufacturing: Asymptotic analysis and numerical results, Commun. Math. Sci., in press. |
[8] | F. Auricchio, G. Toscani and M. Zanella, Trends to equilibrium for a nonlocal Fokker-Planck equation, Applied Math. Letters, 145 (2023), Paper No. 108746, 8 pp. doi: 10.1016/j.aml.2023.108746. |
[9] | F. Bolley, J. A. Cañizo and J. A. Carrillo, Stochastic mean-field limit: non-Lipschitz forces and swarming, Math. Mod. Meth. Appl. Sci., 21 (2011), 2179-2210. doi: 10.1142/S0218202511005702. |
[10] | F. Bolley, A. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation, M2AN Math. Model. Numer. Anal., 44 (2010), 867-884. doi: 10.1051/m2an/2010045. |
[11] | M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and optimal control of the Cucker-Smale model, Math. Control Relat. Fields, 3 (2013), 447-466. doi: 10.3934/mcrf.2013.3.447. |
[12] | J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236. doi: 10.1137/090757290. |
[13] | J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, G. Naldi, L. Pareschi, G. Toscani, (eds). Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2010,297-336. doi: 10.1007/978-0-8176-4946-3_12. |
[14] | A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini and M. Viale, Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci. U.S.A., 107 (2010), 11865-11870. doi: 10.1073/pnas.1005766107. |
[15] | Y.-P. Choi, D. Kalise, J. Peszek and A. A. Peters, A collisionless singular Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn. Systems, 18 (2019), 1954-1981. doi: 10.1137/19M1241799. |
[16] | Y.-P. Choi, D. Oh and O. Tse, Controlled pattern formation of stochastic Cucker-Smale systems with network structures, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106474, 15 pp. doi: 10.1016/j.cnsns.2022.106474. |
[17] | N. Correll and H. Hamann., Probabilistic modeling of swarming systems, in Springer Handbook of Computational Intelligence, Springer, Berlin, Heidelberg, 2015, 1423-1432. doi: 10.1007/978-3-662-43505-2_74. |
[18] | I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. R. Franks, Collective memory and spatial sorting in animal groups, J. Theor. Biol., 218 (2002), 1-11. doi: 10.1006/jtbi.2002.3065. |
[19] | F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842. |
[20] | P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Mod. Meth. Appl. Scie., 18 (2008), 1193-1215. doi: 10.1142/S0218202508003005. |
[21] | M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006), 104-302. |
[22] | S. Duncan, G. Estrada-Rodriguez, J. Stocek, M. Dragone, P. Vargas and H. Gimperlein, Efficient quantitative assessment of robot swarms: Coverage and targeting Levy strategies, Bioinspir. Biomim., 17 (2022). doi: 10.1088/1748-3190/ac57f0. |
[23] | G. Furioli, A. Pulvirenti, E. Terraneo and G. Toscani, Fokker-Planck equations in the modelling of socio-economic phenomena, Math. Models Methods Appl. Scie., 27 (2017), 115-158. doi: 10.1142/S0218202517400048. |
[24] | S.-Y. Ha, J. Jung, J. Kim, J. Park and X. Zhang, Emergent behaviors of the swarmalator model for position-phase aggregation, Math. Mod. Meth. Appl. Sci., 29 (2019), 2225-2269. doi: 10.1142/S0218202519500453. |
[25] | S.-Y. Ha, D. Kim and F. W. Schlöder, Emergent behaviors of Cucker-Smale flocks on Riemannian manifolds, IEEE Trans. Automat. Control, 66 (2021), 3020-3035. doi: 10.1109/TAC.2020.3014096. |
[26] | S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415. |
[27] | H. Hammann, Swarm Robotics: A Formal Approach, Springer Cham, 2018. doi: 10.1007/978-3-319-74528-2. |
[28] | H. Hamann and H. Wörn, A framework of space-time continuous models for algorithm design in swarm robotics, Swarm Intelligence, 2 (2008), 209-239. doi: 10.1007/s11721-008-0015-3. |
[29] | A. J. King, S. J. Portugal, D. Strömbom, R. P. Mann, J. A. Carrillo, D. Kalise, G. de Croon, H. Barnett, P. Scerri, R. Groß, D. R. Chadwick and M. Papadopoulou, Biologically inspired herding of animal groups by robots, Math. Ecol. Evol, 14 (2023), 478-486. doi: 10.1111/2041-210X.14049. |
[30] | C. Le Bris and P.-L. Lions, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Commun. Partial Differ. Equ., 33 (2008), 1272-1317. doi: 10.1080/03605300801970952. |
[31] | N. Loy and M. Zanella, Structure preserving schemes for Fokker-Planck equations with nonconstant diffusion matrices, Math. Comput. Simul., 188 (2021), 342-362. doi: 10.1016/j.matcom.2021.04.018. |
[32] | S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean- Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995), Lecture Notes in Mathematics. Springer, Berlin, 1996, 42-95. doi: 10.1007/BFb0093177. |
[33] | S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577-621. doi: 10.1137/120901866. |
[34] | F. Otto and C. Villani., Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400. doi: 10.1006/jfan.1999.3557. |
[35] | N. Oxman, J. Duro-Royo, S. Keating, B. Peters and E. Tsai, Towards robotic swarm printing, Architectural Design, 84 (2014), 108-115. doi: 10.1002/ad.1764. |
[36] | L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic Equations & Monte Carlo Methods, Oxford University Press, 2013. |
[37] | L. Pareschi and M. Zanella, Structure preserving schemes for nonlinear Fokker-Planck equations and applications, J. Sci. Comput., 74 (2018), 1575-1600. doi: 10.1007/s10915-017-0510-z. |
[38] | R. Temam, Sur la résolution exacte et approchée d'un problème hyperbolique non linéaire de T. Carleman, Arch. Ration. Mech. Anal., 35 (1969), 351-362. doi: 10.1007/BF00247682. |
[39] | G. Toscani, Entropy dissipation and the rate of convergence to equilibrium for the Fokker-Planck equation, Quart. Appl. Math., 57 (1999), 521-541. doi: 10.1090/qam/1704435. |
[40] | G. Toscani and C. Villani, On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Statist. Phys., 98 (2000), 1279-1309. doi: 10.1023/A:1018623930325. |
[41] | G. Toscani and M. Zanella, On a class of Fokker-Planck equations with subcritical confinement, Rend. Lincei Mat. Appl., 32 (2021), 471-497. doi: 10.4171/RLM/944. |
[42] | T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226. |
Left: steady state distribution for the 1D problem with
Test 1a. Evolution of the reconstructed distribution functions of the particles' systems (26)-(27) given by
Test 1a. Comparison between the reconstructed distribution functions
Test 1b. Comparison between the reconstructed distribution function
Test 1b. Evolution of the particles' mean position. We denote with
Test 1c. Top row: evolution of the particles' distribution
Test 1c. Top row: evolution of the particles' distribution
Test 2. Left: evolution of the relative entropy functional
Test 2. Left: evolution of the relative entropy functional