\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new efficiency evaluation approach with rough data: An application to Indian fertilizer

  • *Corresponding author: Alka Arya

    *Corresponding author: Alka Arya 

The authors would like to thank the handling editor and two anonymous reviewers for their valuable and constructive comments

Abstract / Introduction Full Text(HTML) Figure(3) / Table(9) Related Papers Cited by
  • In the world of chaos, nothing is certain. In such an unpredictable world, measuring the efficiency of any individual is inevitable. In a conventional data envelopment analysis (DEA) model, exact input and output quantity data are needed to measure the relative efficiencies of homogeneous decision-making units (DMUs). However, in many real-world applications, the exact knowledge of data might not be available. The rough set theory allows for handling this type of situation. This paper tries to construct a rough DEA model by combining conventional DEA and rough set theory using optimistic and pessimistic $ \beta $ confidence values of rough variables, all of which help provide a way to quantify uncertainty. In the proposed method, the same set of constraints (production possibility sets) is employed to build a unified production frontier for all DMUs that can be used to properly assess each DMU's performance in the presence of rough input and output data. Besides, a ranking system is presented based on the approaches that have been proposed. In the presence of uncertain conditions, this article investigates the efficiency of the Indian fertilizer supply chain for over a decade. The results of the proposed models are compared to the existing DEA models, demonstrating how decision-makers can increase the supply chain performance of Indian fertilizer industries.

    Mathematics Subject Classification: Primary: 90C08, 60L99; Secondary: 90B06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Foodgrains and fertilizers data

    Figure 2.  Production frontier

    Figure 3.  inputs-outputs of the fertilizer supply chain

    Table 1.  DEA in SCM

    Method Data type Application Reference Year
    DEA precise Supply chain [67] 1999
    DEA network precise Swedish pharmacies [42] 1999
    DEA precise Supply chain [46] 2001
    DEA precise Petroleum industry [19] 2002
    DEA precise Taiwan hotels [25] 2003
    DEA precise Power plants [34] 2004
    DEA precise Automotive manufacturer [12] 2008
    Rough DEA uncertain Furniture industry [73] 2009
    DEA precise Enterprise Resource Planning [10] 2009
    Bilevel DEA precise Banking and manufacturing [72] 2010
    DEA precise Korean electronics industry [37] 2012
    DEA precise Green supply chain [45] 2014
    DEA precise Hyundai Steel Company and its suppliers [43] 2015
    DEA uncertain Indian fertilizer supply chain [35] 2017
    Hybrid DEA precise Biodiesel supply chain [8] 2017
    Network DEA precise Tourism supply chain [24] 2018
    Bootstrap DEA precise Healthcare supply chain [33] 2019
    DEA precise Sustainability supply chain [16] 2020
    DEA precise Fairness in supply chain [77] 2021
    DEA uncertain Three-level supply chain [22] 2022
    DEA precise fashion company [55] 2022
     | Show Table
    DownLoad: CSV

    Table 2.  Algorithm based on optimistic and pessimistic

    Algorithm based on optimistic Algorithm based on pessimistic
    Step O.1. Run model (4.3) for each DMU using rough input-output data and determine $ E_{k}^{\sup(\beta)*} $, $ \beta\in [0.6,1] $. Step P.1. Run model (4.4) for each DMU using rough input-output data and identify $ E_{k}^{\inf(\beta)*},\beta \in[0.6,1] $.
    Step O.2. Let $ I=\{1,2,...,n\} $ be an index set. Let $ S^{\beta}=\{DMU_j:E_{k}^{\sup(\beta)*}=1, \beta \in[0.6,1],j\in \bar{I}\} $ and $ S_1^{\beta}=\{DMU_j:E_{k}^{\sup(\beta)*}<1, \beta \in[0.6,1],j\in I-\bar{I}\}. $ Step P.2. Let $ I=\{1,2,...,n\} $ be an index set. Let $ T^{\beta}=\{DMU_j:E_{k}^{\inf(\beta)*}=1, \beta\in[0.6,1],j\in \bar{I}\} $ and $ T_1^{\beta}=\{DMU_j:E_{k}^{\inf(\beta)*}<1, \beta\in[0.6,1],j\in I-\bar{I}\}. $
    Step O.3. Run model (4.11) for $ DMU_j\in S^{\beta} $. Step P.3. Run model (4.12) for $ DMU_j\in T^{\beta} $.
     | Show Table
    DownLoad: CSV

    Table 3.  Rough input data of 17 fertilizer supply chains

    Supply chains Equity capital* (I1) Expense* (I2) Asset* (I3)
    F1 ([7509.2, 7509.2], [7509.2, 7509.2]) ([240.5, 603.8], [211.5, 736.8]) ([4373.5, 6321.3], [3862.9, 6382.1])
    F2 ([289.4,289.4], [289.4, 289.4]) ([20206.1, 22745.8], [17372.7, 23111.5]) ([16753.3, 23778.3], [14329.7, 23826.8])
    F3 ([1554.2, 1554.2], [1554.2, 1554.2]) ([49408.6, 55172.2], [49380.9, 57958.6]) ([79968.6, 87233.5], [76429.3, 106448.6])
    F4 ([797, 797], [797, 797]) ([60184.5, 75291.4], [52649.7, 86734.3]) ([94936, 107283.5], [86621.2, 109167.3])
    F5 ([6865.4, 6865.4], [6865.4, 6865.4]) ([213.1, 3886], [55, 3887.4]) ([2376.9, 2537.5], [1959.2, 2546.5])
    F6 ([0.5, 0.5], [0.5, 0.5]) ([24.5, 52], [21.9, 75.5]) ([103, 174.3], [94.4, 174.4])
    F7 ([1185.5, 1185.5], [1185.5, 1185.5]) ([25125.8, 31324.5], [24489.5, 31515]) ([26084.9, 29497.8], [23998.3, 30706.6])
    F8 ([598.1, 598.1], [598.1, 598.1]) ([24220.7, 39241.2], [22108.4, 41624]) ([42063.1, 48246.3], [38859.1, 55072.3])
    F9 ([4905.8, 4905.8], [4905.8, 4905.8]) ([82817.4, 129528], [78476.1, 132068.2]) ([105554.7, 143484.9], [100050.6, 149129.1])
    F10 ([5516.9, 5516.9], [5516.9, 5516.9]) ([74661.9, 90973.8], [70526.9, 95530.9]) ([66844.3, 91464.8], [65371.9, 104968.3])
    F11 ([4162.1, 4162.1], [4162.1, 4162.1]) ([74774.8, 104192.5], [71595, 111565.3]) ([81230.6, 161534.8], [79681.5, 168028])
    F12 ([291.7, 292.5], [291.3, 293]) ([106353.4, 118939.7], [94563, 133142.9]) ([91745.1, 104428.4], [87303.5, 108638])
    F13 ([4208.5, 4249.8], [4205.5, 6275.7]) ([224320.6, 289446.7], [221938.8, 295581.9]) ([229687.6, 305328.3], [208104.5, 353605.4])
    F14 ([5754.5, 5754.5], [5754.5, 5754.5]) ([36494.8, 48006.1], [36223.8, 48545.5]) ([41315.1, 49726.4], [35857.2, 56277.5])
    F15 ([10, 170.5], [10, 170.5]) ([927.3, 30459.4], [442.9, 39144.7]) ([1204, 53449.8], [755.5, 60297.2])
    F16 ([2036.4, 2036.4], [2036.4, 2036.4]) ([18625.4, 21720.7], [15415.4, 26060.8]) ([14791.5, 20521], [12659.8, 21011.4])
    F17 ([2548.2, 2548.2], [2548.2, 2548.2]) ([51823, 79787.4], [27860.5, 96902.6]) ([132773.1, 143680], [129836.8, 153486])
    * Million Indian rupees
     | Show Table
    DownLoad: CSV

    Table 4.  Rough output data of 17 fertilizer supply chains

    Supply chains Profit after tax* (O1) Sale* (O2) Production** (O3)
    F1 ([301, 1647.8], [86.5, 1909.8]) ([3.1, 11.675], [1.3, 25.1]) ([7.78, 8.52], [6.08, 10.72])
    F2 ([96.4, 200.3], [18.4, 342]) ([20148.8, 21829.4], [16663.3, 22826]) ([5.16, 5.53], [4.02, 5.83])
    F3 ([4988.5, 7411.7], [1726.8, 7895.2]) ([50137, 61345.1], [48489, 61863.7]) ([8.66, 8.98], [8.42, 9.11])
    F4 ([4093.5, 4757.3], [987, 4936.8]) ([61559.3, 76279.7], [54825.3, 85836.4]) ([14.6, 16.47], [14.41, 16.9])
    F5 ([-3805, 221.7], [-3807.5, 93401.4]) ([19.25, 21], [ 17, 21.6]) ([2.3, 3.03], [2.05, 3.24])
    F6 ([-9.5, -2.4], [-11.3, -2.2]) ([18.2, 43.9], [12, 68.7]) ([11.37, 11.84], [11.15, 12.08])
    F7 ([194.1, 605.8], [-2401.3, 645.5]) ([26937.4, 29820.8], [24948.1, 30743.9]) ([6.42, 6.73], [5.85, 6.85])
    F8 ([-4723.5, -927.4], [-4907.3, -215.2]) ([8188.1, 16560.4], [4611.5, 39776.5]) ([3.65, 7.11], [1.99, 7.92])
    F9 ([1986.2, 2127.7], [-1710.1, 2984.5]) ([78146.3, 122427.9], [76619.8, 128111.3]) ([37.97, 38.1], [37.27, 39.61])
    F10 ([1391.7, 1792.6], [788, 2081.5]) ([72511.5, 88707.2], [36887.3, 94173.6]) ([29.37, 30.17], [29.18, 31.87])
    F11 ([4251, 5452.7], [-111.4, 12243.1]) ([74678.2, 100961.4], [74323.4, 122088.8]) ([20.94, 25.03], [20.02, 32.66])
    F12 ([4767.8, 7139.1], [3578.6, 10591.7]) ([101767.1, 131165.2], [82741, 131922.4]) ([22.71, 27.27], [22.21, 27.55])
    F13 ([6847, 8415.8], [ 6368.7, 9371.7]) ([158206, 222900.2], [124865, 279049.9]) ([64.84, 69.25], [61.39, 72.02])
    F14 ([650.9, 1505.9], [433.3, 1590.5]) ([30863.3, 41876.1], [24684.2, 43579.1]) ([12.02, 13.15], [10.63, 13.21])
    F15 ([22.8, 270.1], [-60.9, 545.9]) ([950, 30707.2], [375.1, 37593.8]) ([2.54, 5.04], [0.89, 5.65])
    F16 ([263.5, 533.4], [247.7, 569.4]) ([18422.5, 21110.3]) ([15026.6, 26377.7]) ([5.63, 6.52], [5.5, 6.59])
    F17 ([6927.1, 17669.6], [6662, 68402.2]) ([31860.1, 38370.4], [30205.6, 84695]) ([16.31, 18.62], [15.71, 18.7])
    * Million Indian rupees; ** Lakh metric tonnes
     | Show Table
    DownLoad: CSV

    Table 5.  CC between the optimistic rough data and CC between the optimistic rough data

    I1 I2 I3 O1 O2 O3
    I1 1 0.9495 -0.1234 0.9767 0.1153 0.9498
    I2 0.9587 1 -0.0671 0.9133 0.0966 0.8906
    I3 -0.1583 -0.1199 1 -0.2131 -0.3323 -0.0909
    O1 0.9792 0.9246 -0.2373 1 0.0946 0.9253
    O2 0.1156 0.1015 -0.2509 0.0943 1 0.2584
    O3 0.9553 0.9005 -0.093 0.934 0.2531 1
     | Show Table
    DownLoad: CSV

    Table 6.  PRCC: CC between rough data

    I1 I2 I3 O1 O2 O3
    I1 1
    I2 0.9546 1
    I3 -0.1457 -0.098 1
    O1 0.9781 0.9195 -0.2295 1
    O2 0.11547 0.0992 -0.2865 0.0945 1
    O3 0.9527 0.896 -0.0924 0.9299 0.2558 1
     | Show Table
    DownLoad: CSV

    Table 7.  Optimistic-pessimistic efficiencies of 17 fertilizer supply chains

    Supply chains $ [E^{\sup},E^{\inf}] $
    $ \beta=0.6 $ $ \beta=0.7 $ $ \beta=0.8 $ $ \beta=0.9 $ $ \beta=1 $
    F1 [1, 1] [1, 1] [1, 1] [1, 1] [0.3425, 1]
    F2 [0.9872, 1] [0.8179, 1] [0.6183, 1] [0.3632, 0.9967] [0.0328, 0.6352]
    F3 [0.7056, 0.7569] [0.4495, 0.5212] [0.259, 0.3301] [0.1211, 0.1728] [0.0134, 0.0238]
    F4 [0.6851, 0.7649] [0.4494, 0.5482] [0.2721, 0.3567] [0.1283, 0.303] [0.0134, 0.0548]
    F5 [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
    F6 [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
    F7 [0.7648, 0.8211] [0.5905, 0.6737] [0.4265, 0.5737] [0.2035, 0.4648] [0.0282, 0.1084]
    F8 [0.2804, 0.3701] [0.1719, 0.3134] [0.0974, 0.2717] [0.0405, 0.1758] [0.005, 0.0258]
    F9 [0.662, 0.7939] [0.456, 0.6442] [0.2936, 0.5055] [0.138, 0.3888] [0.0234, 0.0489]
    F10 [0.6951, 0.7816] [0.5282, 0.669] [0.3626, 0.5807] [0.2322, 0.5154] [0.0268, 0.0955]
    F11 [0.6829, 0.8046] [0.4391, 0.6369] [0.2563, 0.4842] [0.1207, 0.2977] [0.0169, 0.0492]
    F12 [0.7725, 0.8524] [0.6113, 0.7439] [0.4437, 0.5948] [0.193, 0.3024] [0.0181, 0.0333]
    F13 [0.5416, 0.6307] [0.3856, 0.5308] [0.2498, 0.4122] [0.1279, 0.2601] [0.0132, 0.0358]
    F14 [0.6408, 0.739] [0.504, 0.6875] [0.3826, 0.6373] [0.2596, 0.5622] [0.0397, 0.0955]
    F15 [0.5755, 1] [0.3489, 1] [0.1943, 1] [0.0794, 1] [0.0046, 1]
    F16 [0.7656, 0.8421] [0.6133, 0.7544] [0.4707, 0.6803] [0.3119, 0.6086] [0.0445, 0.0907]
    F17 [0.3663, 0.468] [0.2219, 0.4166] [0.1242, 0.3285] [0.0567, 0.2402] [0.0101, 0.0398]
     | Show Table
    DownLoad: CSV

    Table 8.  Optimistic-pessimistic super-efficiencies of 17 fertilizer supply chains

    Supply chains $ [SE^{\sup},SE^{\inf}] $
    $ \beta=0.6 $ $ \beta=0.7 $ $ \beta=0.8 $ $ \beta=0.9 $ $ \beta=1 $
    F1 [7.3013, 9.9515] [4.9053, 9.2883] [3.0676, 8.2182] [1.5116, 6.2238] [0.3425, 1.0961]
    F2 [0.9872, 1.2397] [0.8179, 1.2952] [0.6183, 1.0878] [0.3632, 0.9967] [0.0328, 0.6352]
    F3 [0.7056, 0.7569] [0.4495, 0.5212] [0.259, 0.3301] [0.1211, 0.1728] [, 0.0238]
    F4 [0.6851, 0.7649] [0.4494, 0.5482] [0.2721, 0.3567] [0.1283, 0.303] [0.0134, 0.0548]
    F5 [1.8877, 1.9] [1.7865, 1.9] [1.6869, 1.9] [1.5879, 1.9] [1.386, 4.7603]
    F6 [10.2122, 12.2894] [9.0896, 13.1988] [7.8615, 14.1662] [6.124, 14.8885] [4.3193, 15.2126]
    F7 [0.7648, 0.8211] [0.5905, 0.6737] [0.4265, 0.5737] [0.2035, 0.4648] [0.0282, 0.1084]
    F8 [0.2804, 0.3701] [0.1719, 0.3134] [0.0974, 0.2717] [0.0405, 0.1758] [0.005, 0.0258]
    F9 [0.662, 0.7939] [0.456, 0.6442] [0.2936, 0.5055] [0.138, 0.3888] [0.0234, 0.0489]
    F10 [0.6951, 0.7816] [0.5282, 0.669] [0.3626, 0.5807] [0.2322, 0.5154] [0.0268, 0.0955]
    F11 [0.6829, 0.8046] [0.4391, 0.6369] [0.2563, 0.4842] [0.1207, 0.2977] [0.0169, 0.0492]
    F12 [0.7725, 0.8524] [0.6113, 0.7439] [0.4437, 0.5948] [0.193, 0.3024] [0.0181, 0.0333]
    F13 [0.5416, 0.6307] [0.3856, 0.5308] [0.2498, 0.4122] [0.1279, 0.2601] [0.0132, 0.0358]
    F14 [0.6408, 0.739] [0.504, 0.6875] [0.3826, 0.6373] [0.2596, 0.5622] [0.0397, 0.0955]
    F15 [0.5755, 1.2517] [0.3489, 1.7588] [0.1943, 2.6778] [0.0794, 4.7892] [0.0046, 10.3892]
    F16 [0.7656, 0.8421] [0.6133, 0.7544] [0.4707, 0.6803] [0.3119, 0.6086] [0.0445, 0.0907]
    F17 [0.3663, 0.468] [0.2219, 0.4166] [0.1242, 0.3285] [0.0567, 0.2402] [0.0101, 0.0398]
     | Show Table
    DownLoad: CSV

    Table 9.  Comparision between the original DEA and proposed model

    Supply chains Original DEA model ([14]) Rank Proposed model Rank
    F1 24.4374 2 0.3025 3
    F2 3.6104 4 0.0477 5
    F3 1.0227 6 0.0127 15
    F4 1.0157 7 0.0149 13
    F5 1 8 0.1184 4
    F6 158.8404 1 0.5425 1
    F7 1 8 0.0213 8
    F8 1 8 0.0059 17
    F9 1 8 0.0186 11
    F10 1 8 0.0213 9
    F11 1 8 0.0175 12
    F12 1.5248 5 0.0202 10
    F13 1 8 0.0133 14
    F14 1 8 0.0221 7
    F15 4.5376 3 0.3512 2
    F16 1 8 0.0248 6
    F17 1 8 0.0094 16
     | Show Table
    DownLoad: CSV
  • [1] O. Abu, Fertilizer usage and technical efficiency of rice farms under tropical conditions: A data envelopment analysis (dea), Journal of Agricultural Sciences, 2 (2011), 83-87. 
    [2] P. J. Agrell and A. Hatami-Marbini, Frontier-based performance analysis models for supply chain management: State of the art and research directions, Computers & Industrial Engineering, 66 (2013), 567-583. 
    [3] P. Andersen and N. C. Petersen, A procedure for ranking efficient units in data envelopment analysis, Management Science, 39 (1993), 1261-1264. 
    [4] M. AsmildJ. L. Hougaard and D. Kronborg, Do efficiency scores depend on input mix? A statistical test and empirical illustration, Annals of Operations Research, 211 (2013), 37-48. 
    [5] N. K. Avkiran, Productivity analysis in the service sector with data envelopment analysis, Available at SSRN 2627576, (2006).
    [6] A. Azadeh and S. M. Alem, A flexible deterministic, stochastic and fuzzy data envelopment analysis approach for supply chain risk and vendor selection problem: Simulation analysis, Expert Systems with Applications, 37 (2010), 7438-7448. 
    [7] A. AzadehM. SaberiR. T. Moghaddam and L. Javanmardi, An integrated data envelopment analysis–artificial neural network–rough set algorithm for assessment of personnel efficiency, Expert Systems with Applications, 38 (2011), 1364-1373. 
    [8] R. BabazadehJ. RazmiM. Rabbani and M. S. Pishvaee, An integrated data envelopment analysis–mathematical programming approach to strategic biodiesel supply chain network design problem, Journal of Cleaner Production, 147 (2017), 694-707. 
    [9] M. F. Bayati and S. J. Sadjadi, Robust network data envelopment analysis approach to evaluate the efficiency of regional electricity power networks under uncertainty, PloS One, 12 (2017), e0184103.
    [10] E. BendolyE. D. Rosenzweig and J. K. Stratman, The efficient use of enterprise information for strategic advantage: A data envelopment analysis, Journal of Operations Management, 27 (2009), 310-323. 
    [11] B. Bumb, Global Fertilizer Perspective, 1980-2000: The Challenges in Structural Transformation, International Fertilizer Development Center, 1995.
    [12] D. Celebi and D. Bayraktar, An integrated neural network and data envelopment analysis for supplier evaluation under incomplete information, Expert Systems with Applications, 35 (2008), 1698-1710. 
    [13] A. Charnes and W. W. Cooper, Programming with linear fractional functionals, Naval Research Logistics Quarterly, 9 (1962), 181-186.  doi: 10.1002/nav.3800090303.
    [14] A. CharnesW. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (1978), 429-444.  doi: 10.1016/0377-2217(78)90138-8.
    [15] T.-A. Chiang and Z. Che, A fuzzy robust evaluation model for selecting and ranking NPD projects using bayesian belief network and weight-restricted DEA, Expert Systems with Applications, 37 (2010), 7408-7418. 
    [16] D. DeS. ChowdhuryP. K. Dey and S. K. Ghosh, Impact of lean and sustainability oriented innovation on sustainability performance of small and medium sized enterprises: A data envelopment analysis-based framework, International Journal of Production Economics, 219 (2020), 416-430. 
    [17] D. K. Despotis and Y. G. Smirlis, Data envelopment analysis with imprecise data, European Journal of Operational Research, 140 (2002), 24-36. doi: 10.1016/S0377-2217(01)00200-4.
    [18] K. DuA. C. Worthington and V. Zelenyuk, Data envelopment analysis, truncated regression and double-bootstrap for panel data with application to chinese banking, European Journal of Operational Research, 265 (2018), 748-764. 
    [19] L. EastonD. J. Murphy and J. N. Pearson, Purchasing performance evaluation: With data envelopment analysis, European Journal of Purchasing & Supply Management, 8 (2002), 123-134. 
    [20] I. Fraser and D. Cordina, An application of data envelopment analysis to irrigated dairy farms in Northern Victoria, Australia, Agricultural Systems, 59 (1999), 267-282. 
    [21] M. Gupta, Productivity performance of the public and the private sectors in India: A case study of the fertilizer industry, Indian Economic Review, 17 (1982), 165-186. 
    [22] R. HesampourM. HassaniM. M. Hanafiah and K. Heidarbeigi, Technical efficiency, sensitivity analysis and economic assessment applying data envelopment analysis approach: A case study of date production in khuzestan state of Iran, Journal of the Saudi Society of Agricultural Sciences, 21 (2022), 197-207. 
    [23] W. Hopper, Indian agriculture and fertilizer: An outsider's observations, in Keynote address to the FAI Seminar on Emerging Scenario in Fertilizer and Agriculture: Global Dimensions. New Delhi: FAI, (1993).
    [24] C.-W. Huang, Assessing the performance of tourism supply chains by using the hybrid network data envelopment analysis model, Tourism Management, 65 (2018), 303-316. 
    [25] S.-N. Hwang and T.-Y. Chang, Using data envelopment analysis to measure hotel managerial efficiency change in Taiwan, Tourism Management, 24 (2003), 357-369. 
    [26] R. Jacobs, Alternative methods to examine hospital efficiency: Data envelopment analysis and stochastic frontier analysis, Health Care Management Science, 4 (2001), 103-115. 
    [27] H. JiangM. HuaJ. ZhangP. ChengZ. YeM. Huang and Q. Jin, Sustainability efficiency assessment of wastewater treatment plants in China: A data envelopment analysis based on cluster benchmarking, Journal of Cleaner Production, 244 (2020), 118729. 
    [28] C. Kao and S.-T. Liu, Fuzzy efficiency measures in data envelopment analysis, Fuzzy Sets and Systems, 113 (2000), 427-437. 
    [29] C. Kao and S.-T. Liu, A mathematical programming approach to fuzzy efficiency ranking, International Journal of Production Economics, 86 (2003), 145-154. 
    [30] E. E. Karsak, Using data envelopment analysis for evaluating flexible manufacturing systems in the presence of imprecise data, The International Journal of Advanced Manufacturing Technology, 35 (2008), 867-874. 
    [31] M. KhodabakhshiY. Gholami and H. Kheirollahi, An additive model approach for estimating returns to scale in imprecise data envelopment analysis, Applied Mathematical Modelling, 34 (2010), 1247-1257.  doi: 10.1016/j.apm.2009.08.011.
    [32] M. Khodadadipour, A. Hadi-Vencheh, M. Behzadi and M. Rostamy-Malkhalifeh, Undesirable factors in stochastic dea cross-efficiency evaluation: An application to thermal power plant energy efficiency, Economic Analysis and Policy, (2021).
    [33] C. Kim and H. J. Kim, A study on healthcare supply chain management efficiency: Using bootstrap data envelopment analysis, Health Care Management Science, 22 (2019), 534-548. 
    [34] P. J. Korhonen and M. Luptacik, Eco-efficiency analysis of power plants: An extension of data envelopment analysis, European Journal of Operational Research, 154 (2004), 437-446. 
    [35] P. KumarR. K. Singh and R. Shankar, Efficiency measurement of fertilizer-manufacturing organizations using fuzzy data envelopment analysis, Journal of Management Analytics, 4 (2017), 276-295. 
    [36] K. O. Kwateng, E. E. Osei-Wusu and K. Amanor, Exploring the effect of online banking on bank performance using data envelopment analysis, Benchmarking: An International Journal, (2019).
    [37] K.-H. Lee and R. F. Saen, Measuring corporate sustainability management: A data envelopment analysis approach, International Journal of Production Economics, 140 (2012), 219-226. 
    [38] E. L. Lehmann and H. J. D'Abrera, Nonparametrics: Statistical Methods Based on Ranks, Holden-day, 1975.
    [39] N. LiY. JiangH. Mu and Z. Yu, Efficiency evaluation and improvement potential for the chinese agricultural sector at the provincial level based on data envelopment analysis (dea), Energy, 164 (2018), 1145-1160. 
    [40] M. Linna, Measuring hospital cost efficiency with panel data models, Health Economics, 7 (1998), 415-427. 
    [41] B. Liu and B. Liu, Theory and practice of uncertain programming, 239, Springer, 2009.
    [42] M. Löthgren and M. Tambour, Productivity and customer satisfaction in swedish pharmacies: A dea network model, European Journal of Operational Research, 115 (1999), 449-458.  doi: 10.1080/10920277.1999.10595809.
    [43] M. MahdilooR. F. Saen and K.-H. Lee, Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis, International Journal of Production Economics, 168 (2015), 279-289. 
    [44] E. D. Mecit and I. Alp, A new proposed model of restricted data envelopment analysis by correlation coefficients, Applied Mathematical Modelling, 37 (2013), 3407-3425.  doi: 10.1016/j.apm.2012.07.010.
    [45] S. M. MirhedayatianM. Azadi and R. F. Saen, A novel network data envelopment analysis model for evaluating green supply chain management, International Journal of Production Economics, 147 (2014), 544-554. 
    [46] R. NarasimhanS. Talluri and D. Mendez, Supplier evaluation and rationalization via data envelopment analysis: an empirical examination, Journal of Supply Chain Management, 37 (2001), 28-37. 
    [47] S. A. Nastis, T. Bournaris and D. Karpouzos, Fuzzy data envelopment analysis of organic farms, Operational Research, (2017), 1-14. doi: 10.1007/s11634-017-0304-z.
    [48] A. Otto and H. Kotzab, (1999)., How supply chain management contributes to the management of supply chains: Preliminary thoughts on an unpopular question, in Building New Bridges in Logistics: Proceedings of the 11th Annual Conference for Nordic Researchers in Logistics, NOFOMA, 213-236.
    [49] Z. Pawlak, Rough sets, International Journal of Computer & Information Sciences, 11 (1982), 341-356.  doi: 10.1007/BF01001956.
    [50] Z. PayandehA. JahanbakhshiT. Mesri-Gundoshmian and S. Clark, Improving energy efficiency of barley production using joint data envelopment analysis (dea) and life cycle assessment (lca): Evaluation of greenhouse gas emissions and optimization approach, Sustainability, 13 (2021), 6082. 
    [51] Y. M. Pederneiras, M. A. Pereira and J. R. Figueira, Are the portuguese public hospitals sustainable? A triple bottom line hybrid data envelopment analysis approach, International Transactions in Operational Research, (2021).
    [52] M. Pereira and R. Marques, From a millennium to a sustainable water and sanitation development: were we there already?, Journal of Water Supply: Research and Technology-Aqua, (2022).
    [53] M. A. Pereira and R. C. Marques, Technical and scale efficiency of the brazilian municipalities' water and sanitation services: A two-stage data envelopment analysis, Sustainability, 14 (2021), 199.  doi: 10.1016/j.jnt.2020.07.007.
    [54] M. A. Pereira and R. C. Marques, The 'sustainable public health index': What if public health and sustainable development are compatible?, World Development, 149 (2022), 105708. 
    [55] P. PourhejazyP. Thamchutha and T.-I. Namthip, A dea-based decision analytics framework for product deletion in the luxury goods and fashion industry, Decision Analytics Journal, 2 (2022), 100019. 
    [56] R. PowarS. MehetreP. PatilR. PatilV. WagavekarS. Turkewadkar and S. Patil, Study on energy use efficiency for sugarcane crop production using the data envelopment analysis (dea) technique, Journal of Biosystems Engineering, 45 (2020), 291-309. 
    [57] K. Sakouvogui, A comparative approach of stochastic frontier analysis and data envelopment analysis estimators: evidence from banking system. Journal of Economic Studies, (2020).
    [58] A. ShabaniF. VisaniP. BarbieriW. Dullaert and D. Vigo, Reliable estimation of suppliers' total cost of ownership: An imprecise data envelopment analysis model with common weights, Omega, 87 (2019), 57-70. 
    [59] M. Shafiee, Supply chain performance evaluation with rough two-stage data envelopment analysis model: Noncooperative stackelberg game approach, Journal of Computing and Information Science in Engineering, 17 (2017).
    [60] S. Shang and X. Mao, Data envelopment analysis on efficiency evaluation of irrigationfertilization schemes for winter wheat in north China, in International Conference on Computer and Computing Technologies in Agriculture, Springer, (2008), 39-48. doi: 10.1142/6751.
    [61] V. Sharma and H. Thaker, Demand for fertilizer in india: Determinants and outlook for 2020 (wp no. 2011-04-01). Ahmadabad: Indian Institute of Management, (2011).
    [62] R. K. ShirazH. FukuyamaM. Tavana and D. Di Caprio, An integrated data envelopment analysis and free disposal hull framework for cost-efficiency measurement using rough sets, Applied Soft Computing, 46 (2016), 204-219. 
    [63] J.-J. Shuai and H.-L. Li, Using rough set and worst practice dea in business failure prediction, In International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, Springer, 2005,503-510.
    [64] Z. Sidak, P. K. Sen and J. Hajek, Theory of Rank Tests, Elsevier, 1999.
    [65] S. Singh and P. Ranjan, Efficiency analysis of non-homogeneous parallel sub-unit systems for the performance measurement of higher education, Annals of Operations Research, (2017), 1-26.
    [66] Z. Sinuany-SternA. Mehrez and A. Barboy, Academic departments efficiency via dea, Computers & Operations Research, 21 (1994), 543-556. 
    [67] S. TalluriR. Baker and J. Sarkis, A framework for designing efficient value chain networks, International Journal of Production Economics, 62 (1999), 133-144. 
    [68] E. ThanassoulisM. KortelainenG. Johnes and J. Johnes, Costs and efficiency of higher education institutions in england: A dea analysis, Journal of the Operational Research Society, 62 (2011), 1282-1297. 
    [69] O. Tiemann and J. Schreyögg, Changes in hospital efficiency after privatization, Health Care Management Science, 15 (2012), 310-326. 
    [70] T. P. TomichP. Kilby and  B. F. JohnstonTransforming Agrarian Economies: Opportunities Seized, Opportunities Missed, Cornell University Press, 2018. 
    [71] H.-C. TsaiC.-M. Chen and G.-H. Tzeng, The comparative productivity efficiency for global telecoms, International Journal of Production Economics, 103 (2006), 509-526. 
    [72] D. D. Wu, Bilevel programming data envelopment analysis with constrained resource, European Journal of Operational Research, 207 (2010), 856-864.  doi: 10.1016/j.ejor.2010.05.008.
    [73] J. XuB. Li and D. Wu, Rough data envelopment analysis and its application to supply chain performance evaluation, International Journal of Production Economics, 122 (2009), 628-638.  doi: 10.1016/j.ejor.2007.10.009.
    [74] M. M. YuC.-I. LinK.-C. Chen and L.-H. Chen, Measuring Taiwanese bank performance: A two-system dynamic network data envelopment analysis approach, Omega, 98 (2021), 102145. 
    [75] M. Zahedi-SereshtG.-R. Jahanshahloo and J. Jablonsky, A robust data envelopment analysis model with different scenarios, Applied Mathematical Modelling, 52 (2017), 306-319.  doi: 10.1016/j.apm.2017.07.039.
    [76] J. Zhu, Robustness of the efficient DMUs in data envelopment analysis, European Journal of Operational Research, 90 (1996), 451-460.
    [77] Q. ZhuF. LiJ. Wu and J. Sun, Cross-efficiency evaluation in data envelopment analysis based on the perspective of fairness utility, Computers & Industrial Engineering, 151 (2021), 106926.  doi: 10.1016/j.ejor.2018.07.046.
  • 加载中

Figures(3)

Tables(9)

SHARE

Article Metrics

HTML views(2317) PDF downloads(173) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return