August  2019, 24(8): 3537-3556. doi: 10.3934/dcdsb.2018277

Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems

1. 

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoj Karetny lane 19, Moscow 127051, Russia

2. 

Kotel'nikov Institute of Radio-engineering and Electronics, Russian Academy of Sciences, Mokhovaya 11-7, Moscow 125009, Russia

Dedicated to Peter Kloeden on the occasion of his 70th birthday, friendship with whom refutes the thesis that "East is East, and West is West, and never the twain shall meet"

Received  January 2018 Revised  April 2018 Published  October 2018

Fund Project: The author is supported by the Russian Science Foundation, Project number 16-11-00063.

To estimate the growth rate of matrix products $A_{n}··· A_{1}$ with factors from some set of matrices $\mathscr{A}$, such numeric quantities as the joint spectral radius $ρ(\mathscr{A})$ and the lower spectral radius $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \rho } (\mathscr{A})$ are traditionally used. The first of these quantities characterizes the maximum growth rate of the norms of the corresponding products, while the second one characterizes the minimal growth rate. In the theory of discrete-time linear switching systems, the inequality $ρ(\mathscr{A})<1$ serves as a criterion for the stability of a system, and the inequality $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \rho } (\mathscr{A})<1 $ as a criterion for stabilizability.

Given a set $\mathscr{A}$ of $N×M$ matrices and a set $\mathscr{B}$ of $M×N$ matrices. Then, for matrix products $A_{n}B_{n}··· A_{1}B_{1}$ with factors $A_{i}∈\mathscr{A}$ and $B_{i}∈\mathscr{B}$, we introduce the quantities $μ(\mathscr{A},\mathscr{B})$ and $η(\mathscr{A},\mathscr{B})$, called the lower and upper minimax joint spectral radius of the pair $\{\mathscr{A},\mathscr{B}\}$, respectively, which characterize the maximum growth rate of the matrix products $A_{n}B_{n}··· A_{1}B_{1}$ over all sets of matrices $A_{i}∈\mathscr{A}$ and the minimal growth rate over all sets of matrices $B_{i}∈\mathscr{B}$. In this sense, the minimax joint spectral radii can be considered as generalizations of both the joint and lower spectral radii. As an application of the minimax joint spectral radii, it is shown how these quantities can be used to analyze the stabilizability of discrete-time linear switching control systems in the presence of uncontrolled external disturbances of the plant.

Citation: Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277
References:
[1]

E. Asarin, J. Cervelle, A. Degorre, C. Dima, F. Horn and V. Kozyakin, Entropy games and matrix multiplication games, in 33rd Symposium on Theoretical Aspects of Computer Science, (STACS 2016) (eds. N. Ollinger and H. Vollmer), vol. 47 of LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016, 14pp. doi: 10.4230/LIPIcs.STACS.2016.11.  Google Scholar

[2]

M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl., 166 (1992), 21-27.  doi: 10.1016/0024-3795(92)90267-E.  Google Scholar

[3]

V. D. Blondel and Y. Nesterov, Polynomial-time computation of the joint spectral radius for some sets of nonnegative matrices, SIAM J. Matrix Anal. Appl., 31 (2009), 865-876.  doi: 10.1137/080723764.  Google Scholar

[4]

J. Bochi and I. D. Morris, Continuity properties of the lower spectral radius, Proc. Lond. Math. Soc. (3), 110 (2015), 477-509.  doi: 10.1112/plms/pdu058.  Google Scholar

[5]

T. Bousch and J. Mairesse, Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture, J. Amer. Math. Soc., 15 (2002), 77-111.  doi: 10.1090/S0894-0347-01-00378-2.  Google Scholar

[6]

P. BouyerN. MarkeyM. RandourK. G. Larsen and S. Laursen, Average-energy games, Acta Informatica, 55 (2018), 91-127.  doi: 10.1007/s00236-016-0274-1.  Google Scholar

[7]

A. Czornik, On the generalized spectral subradius, Linear Algebra Appl., 407 (2005), 242-248.  doi: 10.1016/j.laa.2005.05.006.  Google Scholar

[8]

X. DaiY. HuangJ. Liu and M. Xiao, The finite-step realizability of the joint spectral radius of a pair of d×d matrices one of which being rank-one, Linear Algebra Appl., 437 (2012), 1548-1561.  doi: 10.1016/j.laa.2012.04.053.  Google Scholar

[9]

X. Dai, A Gel'fand-type spectral-radius formula and stability of linear constrained switching systems, Linear Algebra Appl., 436 (2012), 1099-1113.  doi: 10.1016/j.laa.2011.07.029.  Google Scholar

[10]

X. Dai, Some criteria for spectral finiteness of a finite subset of the real matrix space $\mathbb{R}^{d× d}$, Linear Algebra Appl., 438 (2013), 2717-2727.  doi: 10.1016/j.laa.2012.09.026.  Google Scholar

[11]

X. Dai, Robust periodic stability implies uniform exponential stability of Markovian jump linear systems and random linear ordinary differential equations, J. Franklin Inst., 351 (2014), 2910-2937.  doi: 10.1016/j.jfranklin.2014.01.010.  Google Scholar

[12]

X. DaiY. Huang and M. Xiao, Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities, Automatica J. IFAC, 47 (2011), 1512-1519.  doi: 10.1016/j.automatica.2011.02.034.  Google Scholar

[13]

X. DaiY. Huang and M. Xiao, Pointwise stability of descrete-time stationary matrix-valued Markovian processes, IEEE Trans. Automat. Control, 60 (2015), 1898-1903.  doi: 10.1109/TAC.2014.2361594.  Google Scholar

[14]

I. Daubechies and J. C. Lagarias, Sets of matrices all infinite products of which converge, Linear Algebra Appl., 161 (1992), 227-263.  doi: 10.1016/0024-3795(92)90012-Y.  Google Scholar

[15]

M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 17 (1923), 228-249.  doi: 10.1007/BF01504345.  Google Scholar

[16]

L. Gurvits, Stability of discrete linear inclusion, Linear Algebra Appl., 231 (1995), 47-85.  doi: 10.1016/0024-3795(95)90006-3.  Google Scholar

[17]

C. Heil and G. Strang, Continuity of the joint spectral radius: application to wavelets, in Linear algebra for signal processing (Minneapolis, MN, 1992), vol. 69 of IMA Vol. Math. Appl., Springer, New York, 1995, 51-61. doi: 10.1007/978-1-4612-4228-4_4.  Google Scholar

[18]

R. Jungers, The Joint Spectral Radius, vol. 385 of Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 2009, Theory and applications. doi: 10.1007/978-3-540-95980-9.  Google Scholar

[19]

R. M. Jungers, On asymptotic properties of matrix semigroups with an invariant cone, Linear Algebra Appl., 437 (2012), 1205-1214.  doi: 10.1016/j.laa.2012.04.006.  Google Scholar

[20]

R. M. Jungers and P. Mason, On feedback stabilization of linear switched systems via switching signal control, SIAM J. Control Optim., 55 (2017), 1179-1198.  doi: 10.1137/15M1027802.  Google Scholar

[21]

V. S. Kozyakin, On the absolute stability of systems with asynchronously operating pulse elements, Avtomat. i Telemekh., 1990, 56-63, In Russian, translation in Automat. Remote Control, 51 (1990), 1349-1355 (1991).  Google Scholar

[22]

V. S. Kozyakin, Constructive stability and stabilizability of positive linear discrete-time switching systems, Journal of Communications Technology and Electronics, 62 (2017), 686-693.  doi: 10.1134/S1064226917060110.  Google Scholar

[23]

V. Kozyakin, An explicit Lipschitz constant for the joint spectral radius, Linear Algebra Appl., 433 (2010), 12-18.  doi: 10.1016/j.laa.2010.01.028.  Google Scholar

[24]

V. Kozyakin, An Annotated Bibliography on Convergence of Matrix Products and the Theory of Joint/Generalized Spectral Radius, Preprint, Institute for Information Transmission Problems, Moscow, 2013. doi: 10.13140/2.1.4257.5040.  Google Scholar

[25]

V. Kozyakin, Hourglass alternative and the finiteness conjecture for the spectral characteristics of sets of non-negative matrices, Linear Algebra Appl., 489 (2016), 167-185.  doi: 10.1016/j.laa.2015.10.017.  Google Scholar

[26]

V. Kozyakin, Minimax theorem for the spectral radius of the product of non-negative matrices, Linear and Multilinear Algebra, 65 (2017), 2356-2365.  doi: 10.1080/03081087.2016.1273877.  Google Scholar

[27]

V. Kozyakin, On convergence of infinite matrix products with alternating factors from two sets of matrices, Discrete Dyn. Nat. Soc., 2018 (2018), Art. ID 9216760, 5 pp. doi: 10.1155/2018/9216760.  Google Scholar

[28]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 54 (2009), 308-322.  doi: 10.1109/TAC.2008.2012009.  Google Scholar

[29]

G.-C. Rota and G. Strang, A note on the joint spectral radius, Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math., 22 (1960), 379-381.  doi: 10.1016/S1385-7258(60)50046-1.  Google Scholar

[30]

M.-H. ShihJ.-W. Wu and C.-T. Pang, Asymptotic stability and generalized Gelfand spectral radius formula, Linear Algebra Appl., 252 (1997), 61-70.  doi: 10.1016/0024-3795(95)00592-7.  Google Scholar

[31]

D. P. Stanford, Stability for a multi-rate sampled-data system, SIAM J. Control Optim., 17 (1979), 390-399.  doi: 10.1137/0317029.  Google Scholar

[32]

D. P. Stanford and J. M. Urbano, Some convergence properties of matrix sets, SIAM J. Matrix Anal. Appl., 15 (1994), 1132-1140.  doi: 10.1137/S0895479892228213.  Google Scholar

[33]

Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design, Communications and Control Engineering, Springer, London, 2005. doi: 10.1007/1-84628-131-8.  Google Scholar

[34]

J. Theys, Joint Spectral Radius: Theory and Approximations, PhD thesis, Faculté des sciences appliquées, Département d'ingénierie mathématique, Center for Systems Engineering and Applied Mechanics, Université Catholique de Louvain, 2005. Google Scholar

[35]

J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, 2nd edition, Princeton University Press, Princeton, N. J., 1947.  Google Scholar

[36]

F. Wirth, The generalized spectral radius and extremal norms, Linear Algebra Appl., 342 (2002), 17-40.  doi: 10.1016/S0024-3795(01)00446-3.  Google Scholar

show all references

References:
[1]

E. Asarin, J. Cervelle, A. Degorre, C. Dima, F. Horn and V. Kozyakin, Entropy games and matrix multiplication games, in 33rd Symposium on Theoretical Aspects of Computer Science, (STACS 2016) (eds. N. Ollinger and H. Vollmer), vol. 47 of LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016, 14pp. doi: 10.4230/LIPIcs.STACS.2016.11.  Google Scholar

[2]

M. A. Berger and Y. Wang, Bounded semigroups of matrices, Linear Algebra Appl., 166 (1992), 21-27.  doi: 10.1016/0024-3795(92)90267-E.  Google Scholar

[3]

V. D. Blondel and Y. Nesterov, Polynomial-time computation of the joint spectral radius for some sets of nonnegative matrices, SIAM J. Matrix Anal. Appl., 31 (2009), 865-876.  doi: 10.1137/080723764.  Google Scholar

[4]

J. Bochi and I. D. Morris, Continuity properties of the lower spectral radius, Proc. Lond. Math. Soc. (3), 110 (2015), 477-509.  doi: 10.1112/plms/pdu058.  Google Scholar

[5]

T. Bousch and J. Mairesse, Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture, J. Amer. Math. Soc., 15 (2002), 77-111.  doi: 10.1090/S0894-0347-01-00378-2.  Google Scholar

[6]

P. BouyerN. MarkeyM. RandourK. G. Larsen and S. Laursen, Average-energy games, Acta Informatica, 55 (2018), 91-127.  doi: 10.1007/s00236-016-0274-1.  Google Scholar

[7]

A. Czornik, On the generalized spectral subradius, Linear Algebra Appl., 407 (2005), 242-248.  doi: 10.1016/j.laa.2005.05.006.  Google Scholar

[8]

X. DaiY. HuangJ. Liu and M. Xiao, The finite-step realizability of the joint spectral radius of a pair of d×d matrices one of which being rank-one, Linear Algebra Appl., 437 (2012), 1548-1561.  doi: 10.1016/j.laa.2012.04.053.  Google Scholar

[9]

X. Dai, A Gel'fand-type spectral-radius formula and stability of linear constrained switching systems, Linear Algebra Appl., 436 (2012), 1099-1113.  doi: 10.1016/j.laa.2011.07.029.  Google Scholar

[10]

X. Dai, Some criteria for spectral finiteness of a finite subset of the real matrix space $\mathbb{R}^{d× d}$, Linear Algebra Appl., 438 (2013), 2717-2727.  doi: 10.1016/j.laa.2012.09.026.  Google Scholar

[11]

X. Dai, Robust periodic stability implies uniform exponential stability of Markovian jump linear systems and random linear ordinary differential equations, J. Franklin Inst., 351 (2014), 2910-2937.  doi: 10.1016/j.jfranklin.2014.01.010.  Google Scholar

[12]

X. DaiY. Huang and M. Xiao, Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities, Automatica J. IFAC, 47 (2011), 1512-1519.  doi: 10.1016/j.automatica.2011.02.034.  Google Scholar

[13]

X. DaiY. Huang and M. Xiao, Pointwise stability of descrete-time stationary matrix-valued Markovian processes, IEEE Trans. Automat. Control, 60 (2015), 1898-1903.  doi: 10.1109/TAC.2014.2361594.  Google Scholar

[14]

I. Daubechies and J. C. Lagarias, Sets of matrices all infinite products of which converge, Linear Algebra Appl., 161 (1992), 227-263.  doi: 10.1016/0024-3795(92)90012-Y.  Google Scholar

[15]

M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z., 17 (1923), 228-249.  doi: 10.1007/BF01504345.  Google Scholar

[16]

L. Gurvits, Stability of discrete linear inclusion, Linear Algebra Appl., 231 (1995), 47-85.  doi: 10.1016/0024-3795(95)90006-3.  Google Scholar

[17]

C. Heil and G. Strang, Continuity of the joint spectral radius: application to wavelets, in Linear algebra for signal processing (Minneapolis, MN, 1992), vol. 69 of IMA Vol. Math. Appl., Springer, New York, 1995, 51-61. doi: 10.1007/978-1-4612-4228-4_4.  Google Scholar

[18]

R. Jungers, The Joint Spectral Radius, vol. 385 of Lecture Notes in Control and Information Sciences, Springer-Verlag, Berlin, 2009, Theory and applications. doi: 10.1007/978-3-540-95980-9.  Google Scholar

[19]

R. M. Jungers, On asymptotic properties of matrix semigroups with an invariant cone, Linear Algebra Appl., 437 (2012), 1205-1214.  doi: 10.1016/j.laa.2012.04.006.  Google Scholar

[20]

R. M. Jungers and P. Mason, On feedback stabilization of linear switched systems via switching signal control, SIAM J. Control Optim., 55 (2017), 1179-1198.  doi: 10.1137/15M1027802.  Google Scholar

[21]

V. S. Kozyakin, On the absolute stability of systems with asynchronously operating pulse elements, Avtomat. i Telemekh., 1990, 56-63, In Russian, translation in Automat. Remote Control, 51 (1990), 1349-1355 (1991).  Google Scholar

[22]

V. S. Kozyakin, Constructive stability and stabilizability of positive linear discrete-time switching systems, Journal of Communications Technology and Electronics, 62 (2017), 686-693.  doi: 10.1134/S1064226917060110.  Google Scholar

[23]

V. Kozyakin, An explicit Lipschitz constant for the joint spectral radius, Linear Algebra Appl., 433 (2010), 12-18.  doi: 10.1016/j.laa.2010.01.028.  Google Scholar

[24]

V. Kozyakin, An Annotated Bibliography on Convergence of Matrix Products and the Theory of Joint/Generalized Spectral Radius, Preprint, Institute for Information Transmission Problems, Moscow, 2013. doi: 10.13140/2.1.4257.5040.  Google Scholar

[25]

V. Kozyakin, Hourglass alternative and the finiteness conjecture for the spectral characteristics of sets of non-negative matrices, Linear Algebra Appl., 489 (2016), 167-185.  doi: 10.1016/j.laa.2015.10.017.  Google Scholar

[26]

V. Kozyakin, Minimax theorem for the spectral radius of the product of non-negative matrices, Linear and Multilinear Algebra, 65 (2017), 2356-2365.  doi: 10.1080/03081087.2016.1273877.  Google Scholar

[27]

V. Kozyakin, On convergence of infinite matrix products with alternating factors from two sets of matrices, Discrete Dyn. Nat. Soc., 2018 (2018), Art. ID 9216760, 5 pp. doi: 10.1155/2018/9216760.  Google Scholar

[28]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Trans. Automat. Control, 54 (2009), 308-322.  doi: 10.1109/TAC.2008.2012009.  Google Scholar

[29]

G.-C. Rota and G. Strang, A note on the joint spectral radius, Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math., 22 (1960), 379-381.  doi: 10.1016/S1385-7258(60)50046-1.  Google Scholar

[30]

M.-H. ShihJ.-W. Wu and C.-T. Pang, Asymptotic stability and generalized Gelfand spectral radius formula, Linear Algebra Appl., 252 (1997), 61-70.  doi: 10.1016/0024-3795(95)00592-7.  Google Scholar

[31]

D. P. Stanford, Stability for a multi-rate sampled-data system, SIAM J. Control Optim., 17 (1979), 390-399.  doi: 10.1137/0317029.  Google Scholar

[32]

D. P. Stanford and J. M. Urbano, Some convergence properties of matrix sets, SIAM J. Matrix Anal. Appl., 15 (1994), 1132-1140.  doi: 10.1137/S0895479892228213.  Google Scholar

[33]

Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design, Communications and Control Engineering, Springer, London, 2005. doi: 10.1007/1-84628-131-8.  Google Scholar

[34]

J. Theys, Joint Spectral Radius: Theory and Approximations, PhD thesis, Faculté des sciences appliquées, Département d'ingénierie mathématique, Center for Systems Engineering and Applied Mechanics, Université Catholique de Louvain, 2005. Google Scholar

[35]

J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, 2nd edition, Princeton University Press, Princeton, N. J., 1947.  Google Scholar

[36]

F. Wirth, The generalized spectral radius and extremal norms, Linear Algebra Appl., 342 (2002), 17-40.  doi: 10.1016/S0024-3795(01)00446-3.  Google Scholar

Figure 1.  Discrete-time linear switching system
Figure 2.  Control system consisting of plant $\mathit{\boldsymbol{ \boldsymbol{\mathscr{A}} }}$ and controller $\mathit{\boldsymbol{ \boldsymbol{\mathscr{B}} }}$
[1]

Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3977-3991. doi: 10.3934/dcds.2018173

[2]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[3]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[4]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[5]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[6]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[7]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control & Related Fields, 2019  doi: 10.3934/mcrf.2020017

[8]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020111

[9]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[10]

Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864-873. doi: 10.3934/proc.2011.2011.864

[11]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. Permanence and universal classification of discrete-time competitive systems via the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1621-1663. doi: 10.3934/dcds.2020088

[12]

Qingling Zhang, Guoliang Wang, Wanquan Liu, Yi Zhang. Stabilization of discrete-time Markovian jump systems with partially unknown transition probabilities. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1197-1211. doi: 10.3934/dcdsb.2011.16.1197

[13]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[14]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[15]

Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015

[16]

Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253

[17]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[18]

Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723

[19]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[20]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020105

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (74)
  • HTML views (713)
  • Cited by (1)

Other articles
by authors

[Back to Top]