January  2016, 1: 1 doi: 10.1186/s41546-016-0001-4

Portfolio theory for squared returns correlated across time

1 University of Freiburg, Freiburg im Breisgau, Germany;

2 University of Maryland, College Park, USA

Received  January 12, 2016 Revised  June 10, 2016 Published  August 2016

Allowing for correlated squared returns across two consecutive periods, portfolio theory for two periods is developed. This correlation makes it necessary to work with non-Gaussian models. The two-period conic portfolio problem is formulated and implemented. This development leads to a mean ask price frontier, where the latter employs concave distortions. The modeling permits access to skewness via randomized drifts. Optimal portfolios maximize a conservative market value seen as a bid price for the portfolio. On the mean ask price frontier we observe a tradeoff between the deterministic and random drifts and the volatility costs of increasing the deterministic drift. From a historical perspective, we also implement a mean-variance analysis. The resulting mean-variance frontier is three-dimensional expressing the minimal variance as a function of the targeted levels for the deterministic and random drift.
Citation: Ernst Eberlein, Dilip B. Madan. Portfolio theory for squared returns correlated across time. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 1-. doi: 10.1186/s41546-016-0001-4
References:
[1]

Acharya, VV, Pedersen, LH:Asset pricing with liquidity risk. J. Financ. Econ 77, 375-410 (2005)

[2]

Ait-Sahalia, Y, Brandt, MW:Variable selection for portfolio choice. J. Financ 56, 1297-1351 (2001)

[3]

Bajeux-Besnainou, I, Portait, R:Dynamic asset allocation in a mean-variance framework. Manag. Sci 44, 79-95 (1998)

[4]

Bansal, R, Dahlquist, M, Harvey, CR:Dynamic Trading Strategies and Portfolio Choice. Working Paper, Duke University (2004)

[5]

Barndorff-Nielsen, OE, Shephard, N:Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. B 64, 253-280 (2002)

[6]

Basak, S, Chabakauri, G:Dynamic mean-variance asset allocation. Rev. Financ. Stud 23, 2970-3016 (2010)

[7]

Bielecki, T, Jin, H, Pliska, SR, Zhou, XY:Continuous-time mean-variance portfolio selection with bankruptcy prohibition. Math. Financ 15, 213-244 (2005)

[8]

Brandt, MW, Goyal, A, Santa-Clara, P, Stroud, JR:A simulation approach to dynamic portfolio choice with an application to learning about predictability. Rev. Financ. Stud 18, 831-873 (2005)

[9]

Brandt, MW:Portfolio Choice Problems. In:Ait-Sahalia, Y, Hansen, LP (eds.) Handbook of Financial Econometrics, Chapter 5, pp. 269-336. Elsevier, Amsterdam (2009)

[10]

Brandt, MW, Santa-Clara, P:Dynamic portfolio selection by augmenting the asset space. J. Financ 61, 2187-2218 (2006)

[11]

Campbell, JY, Viceira, LM:Strategic Asset Allocation:Portfolio Choice for Long Term Investors. Oxford University Press, Oxford (2002)

[12]

Cherny, A, Madan, D:New measures for performance evaluation. Rev. Financ. Stud 22, 2571-2606 (2009)

[13]

Cochrane, JHL:A mean-variance benchmark for intertemporal portfolio theory. J. Financ 69, 1-49 (2014)

[14]

Cvitanic, J, Lazrak, A, Wang, T:Implications of the Sharpe ratio as a performance in multi-period settings.J. Econ. Dyn. Control 32, 1622-1649 (2008)

[15]

Cvitanic, J, Zapatero, F:Introduction to the Economics and Mathematics of Financial Markets. MIT Press, Cambridge, MA (2004)

[16]

Duffie, D, Richardson, H:Mean-variance hedging in continuous time. Ann. Appl. Probab 1, 1-15 (1991)

[17]

Hong, H, Scheinkman, J, Xiong, W:Asset float and speculative bubbles. J. Financ 61, 1073-1117 (2006)

[18]

Jagannathan, R, Ma, T:Risk reduction in large portfolios:why imposing the wrong constraints helps. J.Financ 58, 1651-1683 (2003)

[19]

Kusuoka, S:On law invariant coherent risk measures. Adv. Math. Econ 3, 83-95 (2001)

[20]

Leippold, M, Trojani, F, Vanini, P:Geometric approach to multiperiod mean variance optimization of assets and liabilities. J. Econ. Dyn. Control 28, 1079-1113 (2004)

[21]

Lim, AEB, Zhou, XY:Mean-variance portfolio selection with random parameters in a complete market.Math. Oper. Res 27, 101-120 (2002)

[22]

MacLean, LC, Zhao, Y, Ziemba, WT:Mean-variance versus expected utility in dynamic investment analysis. Comput. Manag. Sci 8, 3-22 (2011)

[23]

Madan, DB:Conic portfolio theory. Int. J. Theor. Appl. Financ (2016). doi:10.1142/SO219024916500199

[24]

Madan, DB, Pistorius, M, Stadje, M:On Dynamic Spectral Risk Measures and a Limit Theorem. Working Paper, Imperial College, London (2015)

[25]

Markowitz, HM:Portfolio selection. J. Financ 7, 77-91 (1952)

[26]

Markowitz, HM:Foundations of portfolio theory. J. Financ 46, 469-477 (1991)

[27]

Skiadas, C:Asset Pricing Theory. Princeton University Press, Princeton, NJ (2009)

[28]

Strotz, RH:Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud 23, 165-180 (1956)

[29]

Zhou, XY, Li, D:Continuous-time mean-variance portfolio selection:a stochastic LQ framework. Appl.Math. Optim 42, 19-33 (2000)

show all references

References:
[1]

Acharya, VV, Pedersen, LH:Asset pricing with liquidity risk. J. Financ. Econ 77, 375-410 (2005)

[2]

Ait-Sahalia, Y, Brandt, MW:Variable selection for portfolio choice. J. Financ 56, 1297-1351 (2001)

[3]

Bajeux-Besnainou, I, Portait, R:Dynamic asset allocation in a mean-variance framework. Manag. Sci 44, 79-95 (1998)

[4]

Bansal, R, Dahlquist, M, Harvey, CR:Dynamic Trading Strategies and Portfolio Choice. Working Paper, Duke University (2004)

[5]

Barndorff-Nielsen, OE, Shephard, N:Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. B 64, 253-280 (2002)

[6]

Basak, S, Chabakauri, G:Dynamic mean-variance asset allocation. Rev. Financ. Stud 23, 2970-3016 (2010)

[7]

Bielecki, T, Jin, H, Pliska, SR, Zhou, XY:Continuous-time mean-variance portfolio selection with bankruptcy prohibition. Math. Financ 15, 213-244 (2005)

[8]

Brandt, MW, Goyal, A, Santa-Clara, P, Stroud, JR:A simulation approach to dynamic portfolio choice with an application to learning about predictability. Rev. Financ. Stud 18, 831-873 (2005)

[9]

Brandt, MW:Portfolio Choice Problems. In:Ait-Sahalia, Y, Hansen, LP (eds.) Handbook of Financial Econometrics, Chapter 5, pp. 269-336. Elsevier, Amsterdam (2009)

[10]

Brandt, MW, Santa-Clara, P:Dynamic portfolio selection by augmenting the asset space. J. Financ 61, 2187-2218 (2006)

[11]

Campbell, JY, Viceira, LM:Strategic Asset Allocation:Portfolio Choice for Long Term Investors. Oxford University Press, Oxford (2002)

[12]

Cherny, A, Madan, D:New measures for performance evaluation. Rev. Financ. Stud 22, 2571-2606 (2009)

[13]

Cochrane, JHL:A mean-variance benchmark for intertemporal portfolio theory. J. Financ 69, 1-49 (2014)

[14]

Cvitanic, J, Lazrak, A, Wang, T:Implications of the Sharpe ratio as a performance in multi-period settings.J. Econ. Dyn. Control 32, 1622-1649 (2008)

[15]

Cvitanic, J, Zapatero, F:Introduction to the Economics and Mathematics of Financial Markets. MIT Press, Cambridge, MA (2004)

[16]

Duffie, D, Richardson, H:Mean-variance hedging in continuous time. Ann. Appl. Probab 1, 1-15 (1991)

[17]

Hong, H, Scheinkman, J, Xiong, W:Asset float and speculative bubbles. J. Financ 61, 1073-1117 (2006)

[18]

Jagannathan, R, Ma, T:Risk reduction in large portfolios:why imposing the wrong constraints helps. J.Financ 58, 1651-1683 (2003)

[19]

Kusuoka, S:On law invariant coherent risk measures. Adv. Math. Econ 3, 83-95 (2001)

[20]

Leippold, M, Trojani, F, Vanini, P:Geometric approach to multiperiod mean variance optimization of assets and liabilities. J. Econ. Dyn. Control 28, 1079-1113 (2004)

[21]

Lim, AEB, Zhou, XY:Mean-variance portfolio selection with random parameters in a complete market.Math. Oper. Res 27, 101-120 (2002)

[22]

MacLean, LC, Zhao, Y, Ziemba, WT:Mean-variance versus expected utility in dynamic investment analysis. Comput. Manag. Sci 8, 3-22 (2011)

[23]

Madan, DB:Conic portfolio theory. Int. J. Theor. Appl. Financ (2016). doi:10.1142/SO219024916500199

[24]

Madan, DB, Pistorius, M, Stadje, M:On Dynamic Spectral Risk Measures and a Limit Theorem. Working Paper, Imperial College, London (2015)

[25]

Markowitz, HM:Portfolio selection. J. Financ 7, 77-91 (1952)

[26]

Markowitz, HM:Foundations of portfolio theory. J. Financ 46, 469-477 (1991)

[27]

Skiadas, C:Asset Pricing Theory. Princeton University Press, Princeton, NJ (2009)

[28]

Strotz, RH:Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud 23, 165-180 (1956)

[29]

Zhou, XY, Li, D:Continuous-time mean-variance portfolio selection:a stochastic LQ framework. Appl.Math. Optim 42, 19-33 (2000)

[1]

Dilip B. Madan, King Wang. Correlated squared returns. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 139-158. doi: 10.3934/puqr.2021007

[2]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control and Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[3]

Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control and Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475

[4]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial and Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[5]

Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039

[6]

Luyang Yu, Liyuan Lin, Guohui Guan, Jingzhen Liu. Time-consistent lifetime portfolio selection under smooth ambiguity. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022023

[7]

Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial and Management Optimization, 2021, 17 (2) : 889-908. doi: 10.3934/jimo.2020003

[8]

Dilip B. Madan, Wim Schoutens. Zero covariation returns. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 5-. doi: 10.1186/s41546-018-0031-1

[9]

Fabio Giannoni, Paolo Piccione, Daniel V. Tausk. Morse theory for the travel time brachistochrones in stationary spacetimes. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 697-724. doi: 10.3934/dcds.2002.8.697

[10]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial and Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[11]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial and Management Optimization, 2022, 18 (1) : 511-540. doi: 10.3934/jimo.2020166

[12]

Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 341-366. doi: 10.3934/jimo.2020156

[13]

Zheng Dou, Shaoyong Lai. Optimal contracts and asset prices in a continuous-time delegated portfolio management problem. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022083

[14]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[15]

Laurenz Göllmann, Helmut Maurer. Theory and applications of optimal control problems with multiple time-delays. Journal of Industrial and Management Optimization, 2014, 10 (2) : 413-441. doi: 10.3934/jimo.2014.10.413

[16]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[17]

Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188

[18]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[19]

Aline Cerqueira, Carlos Matheus, Carlos Gustavo Moreira. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra. Journal of Modern Dynamics, 2018, 12: 151-174. doi: 10.3934/jmd.2018006

[20]

Qing-Qing Yang, Wai-Ki Ching, Jia-Wen Gu, Tak-Kuen Siu. Generalized optimal liquidation problems across multiple trading venues. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021109

 Impact Factor: 

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]