January  2016, 1: 1 doi: 10.1186/s41546-016-0001-4

Portfolio theory for squared returns correlated across time

1 University of Freiburg, Freiburg im Breisgau, Germany;

2 University of Maryland, College Park, USA

Received  January 12, 2016 Revised  June 10, 2016 Published  August 2016

Allowing for correlated squared returns across two consecutive periods, portfolio theory for two periods is developed. This correlation makes it necessary to work with non-Gaussian models. The two-period conic portfolio problem is formulated and implemented. This development leads to a mean ask price frontier, where the latter employs concave distortions. The modeling permits access to skewness via randomized drifts. Optimal portfolios maximize a conservative market value seen as a bid price for the portfolio. On the mean ask price frontier we observe a tradeoff between the deterministic and random drifts and the volatility costs of increasing the deterministic drift. From a historical perspective, we also implement a mean-variance analysis. The resulting mean-variance frontier is three-dimensional expressing the minimal variance as a function of the targeted levels for the deterministic and random drift.
Citation: Ernst Eberlein, Dilip B. Madan. Portfolio theory for squared returns correlated across time. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 1-. doi: 10.1186/s41546-016-0001-4
References:
[1]

Acharya, VV, Pedersen, LH:Asset pricing with liquidity risk. J. Financ. Econ 77, 375-410 (2005) Google Scholar

[2]

Ait-Sahalia, Y, Brandt, MW:Variable selection for portfolio choice. J. Financ 56, 1297-1351 (2001) Google Scholar

[3]

Bajeux-Besnainou, I, Portait, R:Dynamic asset allocation in a mean-variance framework. Manag. Sci 44, 79-95 (1998) Google Scholar

[4]

Bansal, R, Dahlquist, M, Harvey, CR:Dynamic Trading Strategies and Portfolio Choice. Working Paper, Duke University (2004) Google Scholar

[5]

Barndorff-Nielsen, OE, Shephard, N:Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. B 64, 253-280 (2002) Google Scholar

[6]

Basak, S, Chabakauri, G:Dynamic mean-variance asset allocation. Rev. Financ. Stud 23, 2970-3016 (2010) Google Scholar

[7]

Bielecki, T, Jin, H, Pliska, SR, Zhou, XY:Continuous-time mean-variance portfolio selection with bankruptcy prohibition. Math. Financ 15, 213-244 (2005) Google Scholar

[8]

Brandt, MW, Goyal, A, Santa-Clara, P, Stroud, JR:A simulation approach to dynamic portfolio choice with an application to learning about predictability. Rev. Financ. Stud 18, 831-873 (2005) Google Scholar

[9]

Brandt, MW:Portfolio Choice Problems. In:Ait-Sahalia, Y, Hansen, LP (eds.) Handbook of Financial Econometrics, Chapter 5, pp. 269-336. Elsevier, Amsterdam (2009) Google Scholar

[10]

Brandt, MW, Santa-Clara, P:Dynamic portfolio selection by augmenting the asset space. J. Financ 61, 2187-2218 (2006) Google Scholar

[11]

Campbell, JY, Viceira, LM:Strategic Asset Allocation:Portfolio Choice for Long Term Investors. Oxford University Press, Oxford (2002) Google Scholar

[12]

Cherny, A, Madan, D:New measures for performance evaluation. Rev. Financ. Stud 22, 2571-2606 (2009) Google Scholar

[13]

Cochrane, JHL:A mean-variance benchmark for intertemporal portfolio theory. J. Financ 69, 1-49 (2014) Google Scholar

[14]

Cvitanic, J, Lazrak, A, Wang, T:Implications of the Sharpe ratio as a performance in multi-period settings.J. Econ. Dyn. Control 32, 1622-1649 (2008) Google Scholar

[15]

Cvitanic, J, Zapatero, F:Introduction to the Economics and Mathematics of Financial Markets. MIT Press, Cambridge, MA (2004) Google Scholar

[16]

Duffie, D, Richardson, H:Mean-variance hedging in continuous time. Ann. Appl. Probab 1, 1-15 (1991) Google Scholar

[17]

Hong, H, Scheinkman, J, Xiong, W:Asset float and speculative bubbles. J. Financ 61, 1073-1117 (2006) Google Scholar

[18]

Jagannathan, R, Ma, T:Risk reduction in large portfolios:why imposing the wrong constraints helps. J.Financ 58, 1651-1683 (2003) Google Scholar

[19]

Kusuoka, S:On law invariant coherent risk measures. Adv. Math. Econ 3, 83-95 (2001) Google Scholar

[20]

Leippold, M, Trojani, F, Vanini, P:Geometric approach to multiperiod mean variance optimization of assets and liabilities. J. Econ. Dyn. Control 28, 1079-1113 (2004) Google Scholar

[21]

Lim, AEB, Zhou, XY:Mean-variance portfolio selection with random parameters in a complete market.Math. Oper. Res 27, 101-120 (2002) Google Scholar

[22]

MacLean, LC, Zhao, Y, Ziemba, WT:Mean-variance versus expected utility in dynamic investment analysis. Comput. Manag. Sci 8, 3-22 (2011) Google Scholar

[23]

Madan, DB:Conic portfolio theory. Int. J. Theor. Appl. Financ (2016). doi:10.1142/SO219024916500199 Google Scholar

[24]

Madan, DB, Pistorius, M, Stadje, M:On Dynamic Spectral Risk Measures and a Limit Theorem. Working Paper, Imperial College, London (2015) Google Scholar

[25]

Markowitz, HM:Portfolio selection. J. Financ 7, 77-91 (1952) Google Scholar

[26]

Markowitz, HM:Foundations of portfolio theory. J. Financ 46, 469-477 (1991) Google Scholar

[27]

Skiadas, C:Asset Pricing Theory. Princeton University Press, Princeton, NJ (2009) Google Scholar

[28]

Strotz, RH:Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud 23, 165-180 (1956) Google Scholar

[29]

Zhou, XY, Li, D:Continuous-time mean-variance portfolio selection:a stochastic LQ framework. Appl.Math. Optim 42, 19-33 (2000) Google Scholar

show all references

References:
[1]

Acharya, VV, Pedersen, LH:Asset pricing with liquidity risk. J. Financ. Econ 77, 375-410 (2005) Google Scholar

[2]

Ait-Sahalia, Y, Brandt, MW:Variable selection for portfolio choice. J. Financ 56, 1297-1351 (2001) Google Scholar

[3]

Bajeux-Besnainou, I, Portait, R:Dynamic asset allocation in a mean-variance framework. Manag. Sci 44, 79-95 (1998) Google Scholar

[4]

Bansal, R, Dahlquist, M, Harvey, CR:Dynamic Trading Strategies and Portfolio Choice. Working Paper, Duke University (2004) Google Scholar

[5]

Barndorff-Nielsen, OE, Shephard, N:Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc. B 64, 253-280 (2002) Google Scholar

[6]

Basak, S, Chabakauri, G:Dynamic mean-variance asset allocation. Rev. Financ. Stud 23, 2970-3016 (2010) Google Scholar

[7]

Bielecki, T, Jin, H, Pliska, SR, Zhou, XY:Continuous-time mean-variance portfolio selection with bankruptcy prohibition. Math. Financ 15, 213-244 (2005) Google Scholar

[8]

Brandt, MW, Goyal, A, Santa-Clara, P, Stroud, JR:A simulation approach to dynamic portfolio choice with an application to learning about predictability. Rev. Financ. Stud 18, 831-873 (2005) Google Scholar

[9]

Brandt, MW:Portfolio Choice Problems. In:Ait-Sahalia, Y, Hansen, LP (eds.) Handbook of Financial Econometrics, Chapter 5, pp. 269-336. Elsevier, Amsterdam (2009) Google Scholar

[10]

Brandt, MW, Santa-Clara, P:Dynamic portfolio selection by augmenting the asset space. J. Financ 61, 2187-2218 (2006) Google Scholar

[11]

Campbell, JY, Viceira, LM:Strategic Asset Allocation:Portfolio Choice for Long Term Investors. Oxford University Press, Oxford (2002) Google Scholar

[12]

Cherny, A, Madan, D:New measures for performance evaluation. Rev. Financ. Stud 22, 2571-2606 (2009) Google Scholar

[13]

Cochrane, JHL:A mean-variance benchmark for intertemporal portfolio theory. J. Financ 69, 1-49 (2014) Google Scholar

[14]

Cvitanic, J, Lazrak, A, Wang, T:Implications of the Sharpe ratio as a performance in multi-period settings.J. Econ. Dyn. Control 32, 1622-1649 (2008) Google Scholar

[15]

Cvitanic, J, Zapatero, F:Introduction to the Economics and Mathematics of Financial Markets. MIT Press, Cambridge, MA (2004) Google Scholar

[16]

Duffie, D, Richardson, H:Mean-variance hedging in continuous time. Ann. Appl. Probab 1, 1-15 (1991) Google Scholar

[17]

Hong, H, Scheinkman, J, Xiong, W:Asset float and speculative bubbles. J. Financ 61, 1073-1117 (2006) Google Scholar

[18]

Jagannathan, R, Ma, T:Risk reduction in large portfolios:why imposing the wrong constraints helps. J.Financ 58, 1651-1683 (2003) Google Scholar

[19]

Kusuoka, S:On law invariant coherent risk measures. Adv. Math. Econ 3, 83-95 (2001) Google Scholar

[20]

Leippold, M, Trojani, F, Vanini, P:Geometric approach to multiperiod mean variance optimization of assets and liabilities. J. Econ. Dyn. Control 28, 1079-1113 (2004) Google Scholar

[21]

Lim, AEB, Zhou, XY:Mean-variance portfolio selection with random parameters in a complete market.Math. Oper. Res 27, 101-120 (2002) Google Scholar

[22]

MacLean, LC, Zhao, Y, Ziemba, WT:Mean-variance versus expected utility in dynamic investment analysis. Comput. Manag. Sci 8, 3-22 (2011) Google Scholar

[23]

Madan, DB:Conic portfolio theory. Int. J. Theor. Appl. Financ (2016). doi:10.1142/SO219024916500199 Google Scholar

[24]

Madan, DB, Pistorius, M, Stadje, M:On Dynamic Spectral Risk Measures and a Limit Theorem. Working Paper, Imperial College, London (2015) Google Scholar

[25]

Markowitz, HM:Portfolio selection. J. Financ 7, 77-91 (1952) Google Scholar

[26]

Markowitz, HM:Foundations of portfolio theory. J. Financ 46, 469-477 (1991) Google Scholar

[27]

Skiadas, C:Asset Pricing Theory. Princeton University Press, Princeton, NJ (2009) Google Scholar

[28]

Strotz, RH:Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud 23, 165-180 (1956) Google Scholar

[29]

Zhou, XY, Li, D:Continuous-time mean-variance portfolio selection:a stochastic LQ framework. Appl.Math. Optim 42, 19-33 (2000) Google Scholar

[1]

Dilip B. Madan, King Wang. Correlated squared returns. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 139-158. doi: 10.3934/puqr.2021007

[2]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control & Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[3]

Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control & Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475

[4]

Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487

[5]

Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039

[6]

Dilip B. Madan, Wim Schoutens. Zero covariation returns. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 5-. doi: 10.1186/s41546-018-0031-1

[7]

Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 889-908. doi: 10.3934/jimo.2020003

[8]

Fabio Giannoni, Paolo Piccione, Daniel V. Tausk. Morse theory for the travel time brachistochrones in stationary spacetimes. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 697-724. doi: 10.3934/dcds.2002.8.697

[9]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial & Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166

[10]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[11]

Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020156

[12]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[13]

Laurenz Göllmann, Helmut Maurer. Theory and applications of optimal control problems with multiple time-delays. Journal of Industrial & Management Optimization, 2014, 10 (2) : 413-441. doi: 10.3934/jimo.2014.10.413

[14]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[15]

Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021188

[16]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[17]

Aline Cerqueira, Carlos Matheus, Carlos Gustavo Moreira. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra. Journal of Modern Dynamics, 2018, 12: 151-174. doi: 10.3934/jmd.2018006

[18]

Qing-Qing Yang, Wai-Ki Ching, Jia-Wen Gu, Tak-Kuen Siu. Generalized optimal liquidation problems across multiple trading venues. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021109

[19]

Juan Kalemkerian, Andrés Sosa. Long-range dependence in the volatility of returns in Uruguayan sovereign debt indices. Journal of Dynamics & Games, 2020, 7 (3) : 225-237. doi: 10.3934/jdg.2020016

[20]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2809-2828. doi: 10.3934/dcds.2020386

 Impact Factor: 

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]