January  2016, 1: 4 doi: 10.1186/s41546-016-0005-0

On approximation of BSDE and multi-step MLE-processes

Laboratoire Manceau des Mathématiques, Université du Maine Le Mans, France and National Research University “MPEI”, Moscow, Russia

Received  January 02, 2016 Revised  June 15, 2016 Published  August 2016

Fund Project: This work was done with partial financial support of the RSF grant number 14-49-10079.

We consider the problem of approximation of the solution of the backward stochastic differential equations in Markovian case. We suppose that the forward equation depends on some unknown finite-dimensional parameter. This approximation is based on the solution of the partial differential equations and multi-step estimator-processes of the unknown parameter. As the model of observations of the forward equation we take a diffusion process with small volatility. First we establish a lower bound on the errors of all approximations and then we propose an approximation which is asymptotically efficient in the sense of this bound. The obtained results are illustrated on the example of the Black and Scholes model.
Citation: Yu A. Kutoyants. On approximation of BSDE and multi-step MLE-processes. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 4-. doi: 10.1186/s41546-016-0005-0
References:
[1]

Bismut, JM:Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl 44, 384-404(1973)

[2]

El Karoui, N, Peng, S, Quenez, M:Backward stochastic differential equations in finance. Math. Fin 7, 1-71 (1997)

[3]

Fisher, RA:Theory of statistical estimation. Proc. Cambridge Phylosophical Society 22, 700-725 (1925)

[4]

Freidlin, MI, Wentzell, AD Random Perturbations of Dynamical Systems, 2nd Ed. Springer, NY (1998)

[5]

Gasparyan, S, Kutoyants, YA:On approximation of the BSDE with unknown volatility in forward equation. Armenian J. Math 7(1), 59-79 (2015)

[6]

Ibragimov, IA, Has'minskii, RZ:Statistical Estimation-Asymptotic Theory. Springer, New York (1981)

[7]

Jeganathan, P:Some asymptotic properties of risk functions when the limit of the experiment is mixed normal. Sankhya:The Indian Journal of Statistics 45(Series A, Pt.1), 66-87 (1983)

[8]

Kamatani, K, Uchida, M:Hybrid multi-step estimators for stochastic differential equations based on sampled data. Statist. Inference Stoch. Processes 18(2), 177-204 (2015)

[9]

Kutoyants, YA:Identification of Dynamical Systems with Small Noise. Kluwer Academic Publisher, Dordrecht (1994)

[10]

Kutoyants, YA:On approximation of the backward stochastic differential equation. Small noise, large samples and high frequency cases. Proceed. Steklov Inst. Mathematics 287, 133-154 (2014)

[11]

Kutoyants, YA:On Multi-Step MLE-Process for Ergodic Diffusion. arXiv:1504.01869[math.ST] (2015)

[12]

Kutoyants, YA, Motrunich, A:On milti-step MLE-process for Markov sequences. Metrika 79(6), 705-724(2016)

[13]

Kutoyants, YA, Zhou, L:On approximation of the backward stochastic differential equation.(arXiv:1305.3728). J. Stat. Plann. Infer 150, 111-123 (2014)

[14]

Le Cam, L:On the asymptotic theory of estimation and testing hypotheses. Proc. 3rd Berkeley Symposium, vol. 1, pp. 129-156 (1956)

[15]

Lehmann, EL, Romano, JP Testing Statistical Hypotheses, 3rd ed. Springer, NY (2005)

[16]

Liptser, R, Shiryaev, AN Statistics of Random Processes, v.'s 1 and 2, 2-nd ed. Springer, NY (2001)

[17]

Pardoux, E, Peng, S:Adapted solution of a backward stochastic differential equation. System Control Letter 14, 55-61 (1990)

[18]

Pardoux, E, Peng, S:Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic Partial Differential Equations and their Applications, pp. 200-217. Springer, Berlin (1992). (Lect. Notes Control Inf. Sci. 176)

[19]

Robinson, PM:The stochastic difference between econometric statistics. Econometrica 56(3), 531-548(1988)

[20]

Skorohod, AV, Khasminskii, RZ:On parameter estimation by indirect observations. Prob. Inform. Transm 32, 58-68 (1996)

[21]

Uchida, M, Yoshida, N:Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations. Statist. Inference Stoch. Processes 17(2), 181-219 (2014)

show all references

References:
[1]

Bismut, JM:Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl 44, 384-404(1973)

[2]

El Karoui, N, Peng, S, Quenez, M:Backward stochastic differential equations in finance. Math. Fin 7, 1-71 (1997)

[3]

Fisher, RA:Theory of statistical estimation. Proc. Cambridge Phylosophical Society 22, 700-725 (1925)

[4]

Freidlin, MI, Wentzell, AD Random Perturbations of Dynamical Systems, 2nd Ed. Springer, NY (1998)

[5]

Gasparyan, S, Kutoyants, YA:On approximation of the BSDE with unknown volatility in forward equation. Armenian J. Math 7(1), 59-79 (2015)

[6]

Ibragimov, IA, Has'minskii, RZ:Statistical Estimation-Asymptotic Theory. Springer, New York (1981)

[7]

Jeganathan, P:Some asymptotic properties of risk functions when the limit of the experiment is mixed normal. Sankhya:The Indian Journal of Statistics 45(Series A, Pt.1), 66-87 (1983)

[8]

Kamatani, K, Uchida, M:Hybrid multi-step estimators for stochastic differential equations based on sampled data. Statist. Inference Stoch. Processes 18(2), 177-204 (2015)

[9]

Kutoyants, YA:Identification of Dynamical Systems with Small Noise. Kluwer Academic Publisher, Dordrecht (1994)

[10]

Kutoyants, YA:On approximation of the backward stochastic differential equation. Small noise, large samples and high frequency cases. Proceed. Steklov Inst. Mathematics 287, 133-154 (2014)

[11]

Kutoyants, YA:On Multi-Step MLE-Process for Ergodic Diffusion. arXiv:1504.01869[math.ST] (2015)

[12]

Kutoyants, YA, Motrunich, A:On milti-step MLE-process for Markov sequences. Metrika 79(6), 705-724(2016)

[13]

Kutoyants, YA, Zhou, L:On approximation of the backward stochastic differential equation.(arXiv:1305.3728). J. Stat. Plann. Infer 150, 111-123 (2014)

[14]

Le Cam, L:On the asymptotic theory of estimation and testing hypotheses. Proc. 3rd Berkeley Symposium, vol. 1, pp. 129-156 (1956)

[15]

Lehmann, EL, Romano, JP Testing Statistical Hypotheses, 3rd ed. Springer, NY (2005)

[16]

Liptser, R, Shiryaev, AN Statistics of Random Processes, v.'s 1 and 2, 2-nd ed. Springer, NY (2001)

[17]

Pardoux, E, Peng, S:Adapted solution of a backward stochastic differential equation. System Control Letter 14, 55-61 (1990)

[18]

Pardoux, E, Peng, S:Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic Partial Differential Equations and their Applications, pp. 200-217. Springer, Berlin (1992). (Lect. Notes Control Inf. Sci. 176)

[19]

Robinson, PM:The stochastic difference between econometric statistics. Econometrica 56(3), 531-548(1988)

[20]

Skorohod, AV, Khasminskii, RZ:On parameter estimation by indirect observations. Prob. Inform. Transm 32, 58-68 (1996)

[21]

Uchida, M, Yoshida, N:Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations. Statist. Inference Stoch. Processes 17(2), 181-219 (2014)

[1]

Rodrigue Gnitchogna Batogna, Abdon Atangana. Generalised class of Time Fractional Black Scholes equation and numerical analysis. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 435-445. doi: 10.3934/dcdss.2019028

[2]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[3]

David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135

[4]

Quan Zhou, Yabing Sun. High order one-step methods for backward stochastic differential equations via Itô-Taylor expansion. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021233

[5]

Marjan Uddin, Hazrat Ali. Space-time kernel based numerical method for generalized Black-Scholes equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2905-2915. doi: 10.3934/dcdss.2020221

[6]

Rehana Naz, Imran Naeem. Exact solutions of a Black-Scholes model with time-dependent parameters by utilizing potential symmetries. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2841-2851. doi: 10.3934/dcdss.2020122

[7]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[8]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[9]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[10]

Azmy S. Ackleh, Jeremy J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 601-616. doi: 10.3934/mbe.2008.5.601

[11]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[12]

Robert Azencott, Yutheeka Gadhyan. Accurate parameter estimation for coupled stochastic dynamics. Conference Publications, 2009, 2009 (Special) : 44-53. doi: 10.3934/proc.2009.2009.44

[13]

Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553

[14]

Boling Guo, Guoli Zhou. On the backward uniqueness of the stochastic primitive equations with additive noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3157-3174. doi: 10.3934/dcdsb.2018305

[15]

Erik Ekström, Johan Tysk. A boundary point lemma for Black-Scholes type operators. Communications on Pure and Applied Analysis, 2006, 5 (3) : 505-514. doi: 10.3934/cpaa.2006.5.505

[16]

Kais Hamza, Fima C. Klebaner. On nonexistence of non-constant volatility in the Black-Scholes formula. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 829-834. doi: 10.3934/dcdsb.2006.6.829

[17]

Ferenc Hartung. Parameter estimation by quasilinearization in differential equations with state-dependent delays. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1611-1631. doi: 10.3934/dcdsb.2013.18.1611

[18]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems and Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[19]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[20]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

 Impact Factor: 

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]