[1]
|
Andersson, D, Djehiche, B:A maximum principle for SDEs of mean-field type, Appl. Math. Optim 63, 341-356 (2011)
|
[2]
|
Antonelli, F:Backward-forward stochastic differential equations. Ann. Appl. Probab 3, 777-793 (1993)
|
[3]
|
Bardi, M:Explicit solutions of some linear-quadratic mean field games. Netw. Heterog. Media 7, 243-261(2012)
|
[4]
|
Bensoussan, A, Sung, K, Yam, S, Yung, S:Linear-quadratic mean-field games. J. Optim. Theory Appl 169, 496-529 (2016)
|
[5]
|
Bismut, J:An introductory approach to duality in optimal stochastic control. SIAM Rev 20, 62-78 (1978)
|
[6]
|
Buckdahn, R, Cardaliaguet, P, Quincampoix, M:Some recent aspects of differential game theory. Dynam Games Appl 1, 74-114 (2010)
|
[7]
|
Buckdahn, R, Djehiche, B, Li, J:A general stochastic maximum principle for SDEs of mean-field type.Appl. Math. Optim 64, 197-216 (2011)
|
[8]
|
Buckdahn, R, Djehiche, B, Li, J, Peng, S:Mean-field backward stochastic differential equations:a limit approach. Ann. Probab 37, 1524-1565 (2009a)
|
[9]
|
Buckdahn, R, Li, J, Peng, S:Mean-field backward stochastic differential equations and related partial differential equations, Stoch. Process. Appl 119, 3133-3154 (2009b)
|
[10]
|
Buckdahn, R, Li, J, Peng, S:Nonlinear stochastic differential games involving a major player and a large number of collectively acting minor agents. SIAM J. Control Optim 52, 451-492 (2014)
|
[11]
|
Carmona, R, Delarue, F:Probabilistic analysis of mean-field games. SIAM J. Control Optim 51, 2705-2734 (2013)
|
[12]
|
Cvitanić, J, Ma, J:Hedging options for a large investor and forward-backward SDE's. Ann. Appl. Probab 6, 370-398 (1996)
|
[13]
|
Duffie, D, Epstein, L:Stochastic differential utility. Econometrica 60, 353-394 (1992)
|
[14]
|
El Karoui, N, Peng, S, Quenez, M:Backward stochastic differential equations in finance. Math.Finance 7, 1-71 (1997)
|
[15]
|
Espinosa, G, Touzi, N:Optimal investment under relative performance concerns. Math. Finance 25, 221-257 (2015)
|
[16]
|
Guéant, O, Lasry, J-M, Lions, P-L:Mean field games and applications, Paris-Princeton lectures on mathematical finance. Springer, Berlin (2010)
|
[17]
|
Huang, M:Large-population LQG games involving a major player:the Nash certainty equivalence principle. SIAM J. Control Optim 48, 3318-3353 (2010)
|
[18]
|
Huang, M, Caines, P, Malhamé, R:Large-population cost-coupled LQG problems with non-uniform agents:individual-mass behavior and decentralized ε-Nash equilibria. IEEE Trans. Autom. Control 52, 1560-1571 (2007)
|
[19]
|
Huang, M, Caines, P, Malhamé, R:Social optima in mean field LQG control:centralized and decentralized strategies. IEEE Trans. Autom. Control 57, 1736-1751 (2012)
|
[20]
|
Huang, M, Malhamé, R, Caines, P:Large population stochastic dynamic games:closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst 6, 221-251(2006)
|
[21]
|
Hu, Y, Peng, S:Solution of forwardbackward stochastic differential equations. Proba. Theory Rel. Fields 103, 273-283 (1995)
|
[22]
|
Lasry, J-M, Lions, P-L:Mean field games. Japan J. Math 2, 229-260 (2007)
|
[23]
|
Li, T, Zhang, J:Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans. Autom. Control 53, 1643-1660 (2008)
|
[24]
|
Lim, E, Zhou, XY:Linear-quadratic control of backward stochastic differential equations. SIAM J.Control Optim 40, 450-474 (2001)
|
[25]
|
Ma, J, Protter, P, Yong, J:Solving forward-backward stochastic differential equations explicitly-a four step scheme, Proba. Theory Rel. Fields 98, 339-359 (1994)
|
[26]
|
Ma, J, Wu, Z, Zhang, D, Zhang, J:On well-posedness of forward-backward SDEs-a unified approach.Ann. Appl. Probab 25, 2168-2214 (2015)
|
[27]
|
Ma, J, Yong, J:Forward-Backward Stochastic Differential Equations and Their Applications. SpringerVerlag, Berlin Heidelberg (1999)
|
[28]
|
Nguyen, S, Huang, M:Linear-quadratic-Gaussian mixed games with continuum-parametrized minor players. SIAM J. Control Optim 50, 2907-2937 (2012)
|
[29]
|
Nourian, M, Caines, P:∊-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J. Control Optim 51, 3302-3331 (2013)
|
[30]
|
Pardoux, E, Peng, S:Adapted solution of backward stochastic equation. Syst. Control Lett 14, 55-61(1990)
|
[31]
|
Peng, S, Wu, Z:Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM. J. Control Optim 37, 825-843 (1999)
|
[32]
|
Wang, G, Wu, Z:The maximum principles for stochastic recursive optimal control problems under partial information. IEEE Trans. Autom. Control 54, 1230-1242 (2009)
|
[33]
|
Wu, Z:A general maximum principle for optimal control of forward-backward stochastic systems.Automatica 49, 1473-1480 (2013)
|
[34]
|
Yong, J:Finding adapted solutions of forward-backward stochastic differential equations:method of continuation. Proba. Theory Rel. Fields 107, 537-572 (1997)
|
[35]
|
Yong, J:Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions. SIAM J. Control Optim 48, 4119-4156 (2010)
|
[36]
|
Yong, J, Zhou, XY:Stochastic Controls:Hamiltonian Systems and HJB Equations. Springer-Verlag, New York (1999)
|
[37]
|
Yu, Z:Linear-quadratic optimal control and nonzero-sum differential game of forward-backward stochastic system. Asian J.Control. 14, 173-185 (2012)
|