January  2017, 2: 3 doi: 10.1186/s41546-017-0012-9

A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective

1 Department of Applied Mathematics, Illinois Institute of Technology, 10 W 32 nd Str, Building E1, Room 208, Chicago, IL 60616, USA;

2 Institute of Mathematics, Jagiellonian University, Cracow, Poland

Received  March 30, 2016 Revised  December 18, 2016

In this work we give a comprehensive overview of the time consistency property of dynamic risk and performance measures, focusing on a the discrete time setup. The two key operational concepts used throughout are the notion of the LMmeasure and the notion of the update rule that, we believe, are the key tools for studying time consistency in a unified framework.
Citation: Tomasz R. Bielecki, Igor Cialenco, Marcin Pitera. A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 3-. doi: 10.1186/s41546-017-0012-9
References:
[1]

Acciaio, B, Föllmer, H, Penner, I:Risk assessment for uncertain cash flows:model ambiguity, discounting ambiguity, and the role of bubbles. Finance Stochastics 16, 669-709 (2012),

[2]

Acciaio, B, Penner, I. In:Di Nunno, G, Øksendal, B (eds.):Dynamic risk measures, pp. 1-34. Springer(2011),

[3]

Artzner, P, Delbaen, F, Eber, JM, Heath, D:Coherent measures of risk. Math. Finance 9(3), 203-228(1999),

[4]

Artzner, P, Delbaen, F, Eber, JM, Heath, D, Ku, H:Coherent multiperiod risk measurement. Preprint(2002a),

[5]

Artzner, P, Delbaen, F, Eber, JM, Heath, D, Ku, H:Multiperiod risk and coherent multiperiod risk measurement. Mimeo. ETH ZLurich, Switzerland (2002b),

[6]

Artzner, P, Delbaen, F, Eber, JM, Heath, D, Ku, H:Coherent multiperiod risk adjusted values and Bellman's principle. Ann. Oper. Res 152, 5-22 (2007),

[7]

Barron, EN, Cardaliaguet, P, Jensen, R:Conditional essential suprema with applications. Appl. Math.Optim 48(3), 229-253 (2003),

[8]

Barrieu, P, El Karoui, N:Optimal derivatives design under dynamic risk measures. Mathematics of finance, volume 351 of Contemp. Math, pp. 13-25 (2004). Amer. Math. Soc Barrieu, P, El Karoui, N:Inf-convolution of risk measures and optimal risk transfer. Finance Stoch 9(2), 269-298 (2005),

[9]

Barrieu, P, El Karoui, N:Pricing, hedging and optimally designing derivatives via minimization of risk measures. In:Carmona, R (ed.) Indifference Pricing. Princeton University Press (2007),

[10]

Bellman, RE, Dreyfus, SE:Applied dynamic programming. Princeton University Press (1962),

[11]

Biagini, S, Bion-Nadal, J:Dynamic quasi-concave performance measures. J. Math. Econ 55, 143-153(2014),

[12]

Bielecki, TR, Pliska, SR:Economic properties of the risk sensitive criterion for portfolio management.Rev. Account. Finance 2, 3-17 (2003),

[13]

Bielecki, TR, Cialenco, I, Iyigunler, I, Rodriguez, R:Dynamic Conic Finance:Pricing and hedging via dynamic coherent acceptability indices with transaction costs. Int. J. Theor. Appl. Finance 16(01), 1350002 (2013),

[14]

Bielecki, TR, Cialenco, I, Pitera, M:A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time. Preprint (2014a),

[15]

Bielecki, TR, Cialenco, I, Zhang, Z:Dynamic coherent acceptability indices and their applications to finance. Math. Finance 24(3), 411-441 (2014b),

[16]

Bielecki, TR, Cialenco, I, Pitera, M:Dynamic limit growth indices in discrete time. Stochastic Models 31, 494-523 (2015a),

[17]

Bielecki, TR, Cialenco, I, Chen, T:Dynamic conic finance via Backward Stochastic Difference Equations.SIAM J. Finan. Math 6(1), 1068-1122 (2015b),

[18]

Bielecki, TR, Cialenco, I, Drapeau, S, Karliczek, M:Dynamic assessment indices. Stochastics:Int. J.Probab. Stochastic Process 88(1), 1-44 (2016),

[19]

Bion-Nadal, J:Dynamic risk measures:time consistency and risk measures from BMO martingales.Finance Stoch 12(2), 219-244 (2008),

[20]

Bion-Nadal, J:Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk. J.Math. Econ 45(11), 738-750 (2009a),

[21]

Bion-Nadal, J:Time consistent dynamic risk processes. Stochastic Process. Appl 119(2), 633-654 (2009b),

[22]

Bion-Nadal, J:Dynamic risk measures and path-dependent second order PDEs. In:Espen Benth, F, Di Nunno, G (eds.) Stochastics of Environmental and Financial Economics, volume 138 of Springer Proceedings in Mathematics & Statistics, pp. 147-178. Springer (2016),

[23]

Boda, K, Filar, J:Time consistent dynamic risk measures. Math. Methods Oper. Res 63(1), 169-186 (2006),

[24]

Bion-Nadal, J, Kervarec, M:Dynamic risk measuring under model uncertainty:taking advantage of the hidden probability measure. Preprint (2010),

[25]

Bion-Nadal, J, Kervarec, M:Risk measuring under model uncertainty. Ann. App. Prob 1, 213-238 (2012),

[26]

Carpentier, P, Chancelier, JP, Cohen, G, De Lara, M, Girardeau, P:Dynamic consistency for stochastic optimal control problems. Ann. Oper. Res 200(1), 247-263 (2012),

[27]

Cheridito, P, Kupper, M:Recursiveness of indifference prices and translation-invariant preferences. Math.Financ. Econ 2(3), 173-188 (2009),

[28]

Cheridito, P, Kupper, M:Composition of time-consistent dynamic monetary risk measures in discrete time. Int. J. Theor. Appl. Finance 14(1), 137-162 (2011),

[29]

Cheridito, P, Li, T:Dual characterization of properties of risk measures on Orlicz hearts. Math. Financ.Econ 2(1), 29-55 (2008),

[30]

Cheridito, P, Li, T:Risk measures on Orlicz hearts. Math. Finance 19(2), 189-214 (2009),

[31]

Cherny, A:Weighted V@R and its properties. Finance Stoch 10(3), 367-393 (2006),

[32]

Cherny, A:Pricing and hedging European options with discrete-time coherent risk. Finance Stoch 11(4), 537-569 (2007),

[33]

Cherny, A:Capital allocation and risk contribution with discrete-time coherent risk. Math. Finance 19(1), 13-40 (2009),

[34]

Cherny, A:Risk-reward optimization with discrete-time coherent risk. Math. Finance 20(4), 571-595(2010),

[35]

Cherny, A, Madan, DB:Pricing and hedging in incomplete markets with coherent risk, 21 (2006). https://ssrn.com/abstract=904806,

[36]

Cherny, A, Madan, DB:New measures for performance evaluation. Rev. Financial Stud 22(7), 2571-2606(2009),

[37]

Cherny, A, Madan, DB:Markets as a counterparty:An introduction to conic finance. Int. J. Theor. Appl.Finance (IJTAF) 13(08), 1149-1177 (2010),

[38]

Cheridito, P, Delbaen, F, Kupper, M:Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab 11(3), 57-106 (2006),

[39]

Cheridito, P, Stadje, M:Time-inconsistency of VaR and time-consistent alternatives. Finance Res. Lett 6(1), 40-46 (2009),

[40]

Cohen, SN, Elliott, RJ:A general theory of finite state backward stochastic difference equations.Stochastic Process. Appl 120(4), 442-466 (2010),

[41]

Cohen, SN, Elliott, RJ:Backward stochastic difference equations and nearly-time-consistent nonlinear expectations. SIAM J. Control Optim 49(1), 125-139 (2011),

[42]

Coquet, F, Hu, Y, Mémin, J, Peng, S:Filtration-consistent nonlinear expectations and related g-xpectations. Probab. Theory Relat. Fields 123(1), 1-27 (2002),

[43]

Davis, M, Lleo, S:Risk-Sensitive Investment Management, volume 19 of Advanced Series on Statistical Science & Applied Probability. World Sci (2014),

[44]

Delbaen, F:Coherent risk measures. Scuola Normale Superiore (2000),

[45]

Delbaen, F:Coherent risk measures on general probability spaces. Advances in finance and stochastics, pp. 1-37. Springer (2002),

[46]

Delbaen, F:The structure of m-stable sets and in particular of the set of risk neutral measures. In memoriam Paul-André Meyer:Séminaire de Probabilités XXXIX, volume 1874 of Lecture Notes in Math., pp. 215-258. Springer, Berlin (2006),

[47]

Delbaen, F:Monetary Utility Functions, volume 3 of CSFI Lecture Notes Series. Osaka University Press(2012),

[48]

Delbaen, F, Peng, S, Rosazza Gianin, E:Representation of the penalty term of dynamic concave utilities.Finance Stoch 14, 449-472 (2010),

[49]

Detlefsen, K, Scandolo, G:Conditional and dynamic convex risk measures. Finance Stochastics 9(4), 539-561 (2005),

[50]

Drapeau, S:Risk Preferences and their Robust Representation. PhD thesis, Humboldt Universität zu Berlin (2010),

[51]

Drapeau, S, Kupper, M:Risk preferences and their robust representation. Math. Oper. Res 38(1), 28-62(2013),

[52]

Elliott, RJ, Siu, TK, Cohen, SN:Backward stochastic difference equations for dynamic convex risk measures on a binomial tree. J. Appl. Probab 52(3), 2015 (2015),

[53]

Epstein, LG, Schneider, M:Recursive multiple-priors. J. Econom. Theory 113(1), 1-31 (2003),

[54]

Fan, J, Ruszczyński, A:Process-based risk measures for observable and partially observable discrete-time controlled systems. Preprint (2014),

[55]

Fasen, V, Svejda, A:Time consistency of multi-period distortion measures. Stat. Risk Model 29(2), 133-153 (2012),

[56]

Feinstein, Z, Rudloff, B:Time consistency of dynamic risk measures in markets with transaction costs.Quant. Finance 13(9), 1473-1489 (2013),

[57]

Feinstein, Z, Rudloff, B:Multi-portfolio time consistency for set-valued convex and coherent risk measures. Finance Stochastics 19(1), 67-107 (2015),

[58]

Filipovic, D, Kupper, M, Vogelpoth, N:Separation and duality in locally L0-convex modules. J. Funct.Anal 256, 3996-4029 (2009),

[59]

Frittelli, M, Maggis, M:Conditional certainty equivalent. Int. J. Theor. Appl. Fin 14(1), 41-59(2010),

[60]

Frittelli, M, Maggis, M:Dual representation of quasiconvex conditional maps. SIAM J. Fin. Math 2, 357-382 (2011),

[61]

Frittelli, M, Maggis, M:Complete duality for quasiconvex dynamic risk measures on modules of the lp-type. Stat. Risk Model 31(1), 103-128 (2014),

[62]

Frittelli, M, Rosazza Gianin, E:Dynamic convex measures. Risk Measures in 21st Century, G. Szegö ed., pp. 227-248 (2004). J. Wiley,

[63]

Frittelli, M, Scandolo, G:Risk measures and capital requirements for processes. Math. Finance 16(4), 589-612 (2006),

[64]

Föllmer, H, Penner, I:Convex risk measures and the dynamics of their penalty functions. Statist. Decis 24(1), 61-96 (2006),

[65]

Föllmer, H, Penner, I:Monetary valuation of cash flows under Knightian uncertainty. Int. J. Theor. Appl. Finance 14(1), 1-15 (2011),

[66]

Föllmer, H, Schied, A:Stochastic finance. An introduction in discrete time, volume 27 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, extended edition (2004),

[67]

Föllmer, H, Schied, A:Convex risk measures. Encyclopedia of Quantitative Finance (2010),

[68]

Geman, H, Ohana, S:Time-consistency in managing a commodity portfolio:A dynamic risk measure approach. J. Bank. Finance 32, 1991-2005 (2008),

[69]

Gerber, HU:On iterative premium calculation principles. Bulletin of the Swiss Association of Actuaries 74, 163-172 (1974),

[70]

Gilboa, I, Schmeidler, D:Maxmin expected utility with nonunique prior. J. Math. Econom 18(2), 141-153(1989),

[71]

Goovaerts, MJ, De Vylder, F:A note on iterative premium calculation principles. ASTIN Bull 10(3), 325-329 (1979),

[72]

Hamel, A, Heyde, F, Rudloff, B:Set-valued risk measures for conical market models. Math. Financial Econ 5(1), 1-28 (2011),

[73]

Hamel, A, Rudloff, B:Continuity and Finite-Valuedness of Set-Valued Risk Measures. Festschrift in Celebration of Prof. Dr. Wilfried Grecksch's 60th Birthday. Shaker, pp. 49-64 (2008),

[74]

Hamel, A, Rudloff, B, Yankova, M:Set-valued average value at risk and its computation. Math. Financial Econ 7(2), 229-246 (2013),

[75]

Iancu, DA, Petrik, M, Subramanian, D:Tight approximations of dynamic risk measures. Math. Oper. Res 40(3), 655-682 (2015),

[76]

Jiang, L:Convexity, translation invariance and subadditivity for g-epectations and related risk measures.Ann. Appl. Probab 18(1), 245-258 (2008),

[77]

Jobert, A, Rogers, LCG:Valuations and dynamic convex risk measures. Math. Finance 18(1), 1-22 (2008),

[78]

Kaina, M, Rüschendorf, L:On convex risk measures on Lp-spaces. Math. Methods Oper. Res 69(3), 475-495 (2009),

[79]

Karatzas, I, Shreve, SE:Methods of mathematical finance. Springer (1998),

[80]

Klöppel, S, Schweizer, M:Dynamic indifference valuation via convex risk measures. Math. Finance 17(4), 599-627 (2007),

[81]

Koopmans, TC:Stationary ordinal utility and impatience. Econometrica 28, 287-309 (1960),

[82]

Kreps, DM, Porteus, EL:Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46(1), 185-200 (1978),

[83]

Kupper, M, Schachermayer, W:Representation results for law invariant time consistent functions. Math.Financial Econ 2(3), 189-210 (2009),

[84]

Mastrogiacomo, E, Rosazza Gianin, E:Time-consistency of cash-subadditive risk measures. Preprint(2015),

[85]

Nutz, M, Soner, HM:Superhedging and dynamic risk measures under volatility uncertainty. SIAM J.Control Optimization 50(4), 2065-2089 (2012),

[86]

Peng, S:Backward SDE and related g-expectations. Backward Stochastic Diff. Equations Pitman Res.Notes Math. Series 364, 141-159 (1997),

[87]

Peng, S:Nonlinear expectations, nonlinear evaluations and risk measures. Stochastic methods in finance, volume 1856 of Lecture Notes in Math, pp. 165-253. Springer, Berlin (2004),

[88]

Penner, I:Dynamic Convex Risk Measures:Time Consistency, Prudence, and Sustainability. PhD thesis, Humboldt Universität zu Berlin (2007),

[89]

Penner, I, Réveillac, A:Risk measures for processes and bsdes. Finance Stochastics 19(1), 23-66 (2014),

[90]

Pitera, M:Selected problems on discrete time stochastic control for dynamic risk and performance measures. PhD thesis, Jagiellonian University (2014),

[91]

Riedel, F:Dynamic coherent risk measures. Stochastic Process. Appl 112(2), 185-200 (2004),

[92]

Roorda, B, Schumacher, JM:Time consistency conditions for acceptability measures, with an application to Tail Value at Risk. Insurance Math. Econom 40(2), 209-230 (2007),

[93]

Roorda, B, Schumacher, JM:Weakly time consistent concave valuations and their dual representations.Finance Stochastics 20(1), 123-151 (2015),

[94]

Roorda, B, Schumacher, JM, Engwerda, J:Coherent acceptability measures in multiperiod models. Math.Finance 15(4), 589-612 (2005),

[95]

Rosazza Gianin, E:Convexity and law invariance of risk measures. PhD thesis, Universita de Bergamo, Italy (2002),

[96]

Rosazza Gianin, E:Risk measures via g-expectations. Insur. Math. Econ 39(1), 19-34 (2006),

[97]

Rosazza Gianin, E, Sgarra, E:Acceptability indexes via g-expectations:an application to liquidity risk.Math. Finance 7, 457-475 (2013),

[98]

Ruszczyński, A:Risk-averse dynamic programming for Markov decision processes. Math. Program 125(2), 235-261 (2010),

[99]

Ruszczyński, A, Shapiro, A:Conditional risk mappings. Math. Oper. Res 31(3), 544-561 (2006a),

[100]

Ruszczyński, A, Shapiro, A:Optimization of convex risk functions. Math. Oper. Res 31(3), 433-452(2006b),

[101]

Scandolo, G:Risk Measures in a Dynamic Setting. PhD thesis, Universitia degli Studi di Milano, Italy(2003),

[102]

Shapiro, A:On a time consistency concept in risk averse multistage stochastic programming. Oper. Res.Lett 37, 143-147 (2009),

[103]

Shapiro, A:A dynamic programming approach to adjustable robust optimization. Oper. Res. Lett 39, 83-87 (2011),

[104]

Shapiro, A:Time consistency of dynamic risk measures. Oper. Res. Lett 40(6), 436-439 (2012),

[105]

Sircar, R, Sturm, S:From smile asymptotics to market risk measures. Math. Finance 25(2), 400-425(2015),

[106]

Stadje, M:Extending dynamic convex risk measures from discrete time to continuous time:a convergence approach. Insurance Math. Econom 47(3), 391-404 (2010),

[107]

Szegö, G:Measures of ris. J. Bank. Finance 26, 1253-1272 (2002),

[108]

Tutsch, S:Update rules for convex risk measures. Quant. Finance 8(8), 833-843 (2008),

[109]

Vogelpoth, N:L0-convex Analysis and Conditional Risk Measures. PhD thesis, University of Vienna(2009),

[110]

Wang, T:A class of dynamic risk measures. J. Risk Uncertainty 17, 87-119 (2002),

[111]

Weber, S:Distribution-invariant risk measures, information, and dynamic consistency. Math. Finance 16(2), 419-441 (2006),

[112]

Whittle, P:Risk-sensitive optimal control. Wiley New York (1990),

[113]

Zariphopoulou, T, Žitković, G:Maturity independent risk measures. SIAM J. Financial Math 1, 266-288(2010),

show all references

References:
[1]

Acciaio, B, Föllmer, H, Penner, I:Risk assessment for uncertain cash flows:model ambiguity, discounting ambiguity, and the role of bubbles. Finance Stochastics 16, 669-709 (2012),

[2]

Acciaio, B, Penner, I. In:Di Nunno, G, Øksendal, B (eds.):Dynamic risk measures, pp. 1-34. Springer(2011),

[3]

Artzner, P, Delbaen, F, Eber, JM, Heath, D:Coherent measures of risk. Math. Finance 9(3), 203-228(1999),

[4]

Artzner, P, Delbaen, F, Eber, JM, Heath, D, Ku, H:Coherent multiperiod risk measurement. Preprint(2002a),

[5]

Artzner, P, Delbaen, F, Eber, JM, Heath, D, Ku, H:Multiperiod risk and coherent multiperiod risk measurement. Mimeo. ETH ZLurich, Switzerland (2002b),

[6]

Artzner, P, Delbaen, F, Eber, JM, Heath, D, Ku, H:Coherent multiperiod risk adjusted values and Bellman's principle. Ann. Oper. Res 152, 5-22 (2007),

[7]

Barron, EN, Cardaliaguet, P, Jensen, R:Conditional essential suprema with applications. Appl. Math.Optim 48(3), 229-253 (2003),

[8]

Barrieu, P, El Karoui, N:Optimal derivatives design under dynamic risk measures. Mathematics of finance, volume 351 of Contemp. Math, pp. 13-25 (2004). Amer. Math. Soc Barrieu, P, El Karoui, N:Inf-convolution of risk measures and optimal risk transfer. Finance Stoch 9(2), 269-298 (2005),

[9]

Barrieu, P, El Karoui, N:Pricing, hedging and optimally designing derivatives via minimization of risk measures. In:Carmona, R (ed.) Indifference Pricing. Princeton University Press (2007),

[10]

Bellman, RE, Dreyfus, SE:Applied dynamic programming. Princeton University Press (1962),

[11]

Biagini, S, Bion-Nadal, J:Dynamic quasi-concave performance measures. J. Math. Econ 55, 143-153(2014),

[12]

Bielecki, TR, Pliska, SR:Economic properties of the risk sensitive criterion for portfolio management.Rev. Account. Finance 2, 3-17 (2003),

[13]

Bielecki, TR, Cialenco, I, Iyigunler, I, Rodriguez, R:Dynamic Conic Finance:Pricing and hedging via dynamic coherent acceptability indices with transaction costs. Int. J. Theor. Appl. Finance 16(01), 1350002 (2013),

[14]

Bielecki, TR, Cialenco, I, Pitera, M:A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time. Preprint (2014a),

[15]

Bielecki, TR, Cialenco, I, Zhang, Z:Dynamic coherent acceptability indices and their applications to finance. Math. Finance 24(3), 411-441 (2014b),

[16]

Bielecki, TR, Cialenco, I, Pitera, M:Dynamic limit growth indices in discrete time. Stochastic Models 31, 494-523 (2015a),

[17]

Bielecki, TR, Cialenco, I, Chen, T:Dynamic conic finance via Backward Stochastic Difference Equations.SIAM J. Finan. Math 6(1), 1068-1122 (2015b),

[18]

Bielecki, TR, Cialenco, I, Drapeau, S, Karliczek, M:Dynamic assessment indices. Stochastics:Int. J.Probab. Stochastic Process 88(1), 1-44 (2016),

[19]

Bion-Nadal, J:Dynamic risk measures:time consistency and risk measures from BMO martingales.Finance Stoch 12(2), 219-244 (2008),

[20]

Bion-Nadal, J:Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk. J.Math. Econ 45(11), 738-750 (2009a),

[21]

Bion-Nadal, J:Time consistent dynamic risk processes. Stochastic Process. Appl 119(2), 633-654 (2009b),

[22]

Bion-Nadal, J:Dynamic risk measures and path-dependent second order PDEs. In:Espen Benth, F, Di Nunno, G (eds.) Stochastics of Environmental and Financial Economics, volume 138 of Springer Proceedings in Mathematics & Statistics, pp. 147-178. Springer (2016),

[23]

Boda, K, Filar, J:Time consistent dynamic risk measures. Math. Methods Oper. Res 63(1), 169-186 (2006),

[24]

Bion-Nadal, J, Kervarec, M:Dynamic risk measuring under model uncertainty:taking advantage of the hidden probability measure. Preprint (2010),

[25]

Bion-Nadal, J, Kervarec, M:Risk measuring under model uncertainty. Ann. App. Prob 1, 213-238 (2012),

[26]

Carpentier, P, Chancelier, JP, Cohen, G, De Lara, M, Girardeau, P:Dynamic consistency for stochastic optimal control problems. Ann. Oper. Res 200(1), 247-263 (2012),

[27]

Cheridito, P, Kupper, M:Recursiveness of indifference prices and translation-invariant preferences. Math.Financ. Econ 2(3), 173-188 (2009),

[28]

Cheridito, P, Kupper, M:Composition of time-consistent dynamic monetary risk measures in discrete time. Int. J. Theor. Appl. Finance 14(1), 137-162 (2011),

[29]

Cheridito, P, Li, T:Dual characterization of properties of risk measures on Orlicz hearts. Math. Financ.Econ 2(1), 29-55 (2008),

[30]

Cheridito, P, Li, T:Risk measures on Orlicz hearts. Math. Finance 19(2), 189-214 (2009),

[31]

Cherny, A:Weighted V@R and its properties. Finance Stoch 10(3), 367-393 (2006),

[32]

Cherny, A:Pricing and hedging European options with discrete-time coherent risk. Finance Stoch 11(4), 537-569 (2007),

[33]

Cherny, A:Capital allocation and risk contribution with discrete-time coherent risk. Math. Finance 19(1), 13-40 (2009),

[34]

Cherny, A:Risk-reward optimization with discrete-time coherent risk. Math. Finance 20(4), 571-595(2010),

[35]

Cherny, A, Madan, DB:Pricing and hedging in incomplete markets with coherent risk, 21 (2006). https://ssrn.com/abstract=904806,

[36]

Cherny, A, Madan, DB:New measures for performance evaluation. Rev. Financial Stud 22(7), 2571-2606(2009),

[37]

Cherny, A, Madan, DB:Markets as a counterparty:An introduction to conic finance. Int. J. Theor. Appl.Finance (IJTAF) 13(08), 1149-1177 (2010),

[38]

Cheridito, P, Delbaen, F, Kupper, M:Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab 11(3), 57-106 (2006),

[39]

Cheridito, P, Stadje, M:Time-inconsistency of VaR and time-consistent alternatives. Finance Res. Lett 6(1), 40-46 (2009),

[40]

Cohen, SN, Elliott, RJ:A general theory of finite state backward stochastic difference equations.Stochastic Process. Appl 120(4), 442-466 (2010),

[41]

Cohen, SN, Elliott, RJ:Backward stochastic difference equations and nearly-time-consistent nonlinear expectations. SIAM J. Control Optim 49(1), 125-139 (2011),

[42]

Coquet, F, Hu, Y, Mémin, J, Peng, S:Filtration-consistent nonlinear expectations and related g-xpectations. Probab. Theory Relat. Fields 123(1), 1-27 (2002),

[43]

Davis, M, Lleo, S:Risk-Sensitive Investment Management, volume 19 of Advanced Series on Statistical Science & Applied Probability. World Sci (2014),

[44]

Delbaen, F:Coherent risk measures. Scuola Normale Superiore (2000),

[45]

Delbaen, F:Coherent risk measures on general probability spaces. Advances in finance and stochastics, pp. 1-37. Springer (2002),

[46]

Delbaen, F:The structure of m-stable sets and in particular of the set of risk neutral measures. In memoriam Paul-André Meyer:Séminaire de Probabilités XXXIX, volume 1874 of Lecture Notes in Math., pp. 215-258. Springer, Berlin (2006),

[47]

Delbaen, F:Monetary Utility Functions, volume 3 of CSFI Lecture Notes Series. Osaka University Press(2012),

[48]

Delbaen, F, Peng, S, Rosazza Gianin, E:Representation of the penalty term of dynamic concave utilities.Finance Stoch 14, 449-472 (2010),

[49]

Detlefsen, K, Scandolo, G:Conditional and dynamic convex risk measures. Finance Stochastics 9(4), 539-561 (2005),

[50]

Drapeau, S:Risk Preferences and their Robust Representation. PhD thesis, Humboldt Universität zu Berlin (2010),

[51]

Drapeau, S, Kupper, M:Risk preferences and their robust representation. Math. Oper. Res 38(1), 28-62(2013),

[52]

Elliott, RJ, Siu, TK, Cohen, SN:Backward stochastic difference equations for dynamic convex risk measures on a binomial tree. J. Appl. Probab 52(3), 2015 (2015),

[53]

Epstein, LG, Schneider, M:Recursive multiple-priors. J. Econom. Theory 113(1), 1-31 (2003),

[54]

Fan, J, Ruszczyński, A:Process-based risk measures for observable and partially observable discrete-time controlled systems. Preprint (2014),

[55]

Fasen, V, Svejda, A:Time consistency of multi-period distortion measures. Stat. Risk Model 29(2), 133-153 (2012),

[56]

Feinstein, Z, Rudloff, B:Time consistency of dynamic risk measures in markets with transaction costs.Quant. Finance 13(9), 1473-1489 (2013),

[57]

Feinstein, Z, Rudloff, B:Multi-portfolio time consistency for set-valued convex and coherent risk measures. Finance Stochastics 19(1), 67-107 (2015),

[58]

Filipovic, D, Kupper, M, Vogelpoth, N:Separation and duality in locally L0-convex modules. J. Funct.Anal 256, 3996-4029 (2009),

[59]

Frittelli, M, Maggis, M:Conditional certainty equivalent. Int. J. Theor. Appl. Fin 14(1), 41-59(2010),

[60]

Frittelli, M, Maggis, M:Dual representation of quasiconvex conditional maps. SIAM J. Fin. Math 2, 357-382 (2011),

[61]

Frittelli, M, Maggis, M:Complete duality for quasiconvex dynamic risk measures on modules of the lp-type. Stat. Risk Model 31(1), 103-128 (2014),

[62]

Frittelli, M, Rosazza Gianin, E:Dynamic convex measures. Risk Measures in 21st Century, G. Szegö ed., pp. 227-248 (2004). J. Wiley,

[63]

Frittelli, M, Scandolo, G:Risk measures and capital requirements for processes. Math. Finance 16(4), 589-612 (2006),

[64]

Föllmer, H, Penner, I:Convex risk measures and the dynamics of their penalty functions. Statist. Decis 24(1), 61-96 (2006),

[65]

Föllmer, H, Penner, I:Monetary valuation of cash flows under Knightian uncertainty. Int. J. Theor. Appl. Finance 14(1), 1-15 (2011),

[66]

Föllmer, H, Schied, A:Stochastic finance. An introduction in discrete time, volume 27 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, extended edition (2004),

[67]

Föllmer, H, Schied, A:Convex risk measures. Encyclopedia of Quantitative Finance (2010),

[68]

Geman, H, Ohana, S:Time-consistency in managing a commodity portfolio:A dynamic risk measure approach. J. Bank. Finance 32, 1991-2005 (2008),

[69]

Gerber, HU:On iterative premium calculation principles. Bulletin of the Swiss Association of Actuaries 74, 163-172 (1974),

[70]

Gilboa, I, Schmeidler, D:Maxmin expected utility with nonunique prior. J. Math. Econom 18(2), 141-153(1989),

[71]

Goovaerts, MJ, De Vylder, F:A note on iterative premium calculation principles. ASTIN Bull 10(3), 325-329 (1979),

[72]

Hamel, A, Heyde, F, Rudloff, B:Set-valued risk measures for conical market models. Math. Financial Econ 5(1), 1-28 (2011),

[73]

Hamel, A, Rudloff, B:Continuity and Finite-Valuedness of Set-Valued Risk Measures. Festschrift in Celebration of Prof. Dr. Wilfried Grecksch's 60th Birthday. Shaker, pp. 49-64 (2008),

[74]

Hamel, A, Rudloff, B, Yankova, M:Set-valued average value at risk and its computation. Math. Financial Econ 7(2), 229-246 (2013),

[75]

Iancu, DA, Petrik, M, Subramanian, D:Tight approximations of dynamic risk measures. Math. Oper. Res 40(3), 655-682 (2015),

[76]

Jiang, L:Convexity, translation invariance and subadditivity for g-epectations and related risk measures.Ann. Appl. Probab 18(1), 245-258 (2008),

[77]

Jobert, A, Rogers, LCG:Valuations and dynamic convex risk measures. Math. Finance 18(1), 1-22 (2008),

[78]

Kaina, M, Rüschendorf, L:On convex risk measures on Lp-spaces. Math. Methods Oper. Res 69(3), 475-495 (2009),

[79]

Karatzas, I, Shreve, SE:Methods of mathematical finance. Springer (1998),

[80]

Klöppel, S, Schweizer, M:Dynamic indifference valuation via convex risk measures. Math. Finance 17(4), 599-627 (2007),

[81]

Koopmans, TC:Stationary ordinal utility and impatience. Econometrica 28, 287-309 (1960),

[82]

Kreps, DM, Porteus, EL:Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46(1), 185-200 (1978),

[83]

Kupper, M, Schachermayer, W:Representation results for law invariant time consistent functions. Math.Financial Econ 2(3), 189-210 (2009),

[84]

Mastrogiacomo, E, Rosazza Gianin, E:Time-consistency of cash-subadditive risk measures. Preprint(2015),

[85]

Nutz, M, Soner, HM:Superhedging and dynamic risk measures under volatility uncertainty. SIAM J.Control Optimization 50(4), 2065-2089 (2012),

[86]

Peng, S:Backward SDE and related g-expectations. Backward Stochastic Diff. Equations Pitman Res.Notes Math. Series 364, 141-159 (1997),

[87]

Peng, S:Nonlinear expectations, nonlinear evaluations and risk measures. Stochastic methods in finance, volume 1856 of Lecture Notes in Math, pp. 165-253. Springer, Berlin (2004),

[88]

Penner, I:Dynamic Convex Risk Measures:Time Consistency, Prudence, and Sustainability. PhD thesis, Humboldt Universität zu Berlin (2007),

[89]

Penner, I, Réveillac, A:Risk measures for processes and bsdes. Finance Stochastics 19(1), 23-66 (2014),

[90]

Pitera, M:Selected problems on discrete time stochastic control for dynamic risk and performance measures. PhD thesis, Jagiellonian University (2014),

[91]

Riedel, F:Dynamic coherent risk measures. Stochastic Process. Appl 112(2), 185-200 (2004),

[92]

Roorda, B, Schumacher, JM:Time consistency conditions for acceptability measures, with an application to Tail Value at Risk. Insurance Math. Econom 40(2), 209-230 (2007),

[93]

Roorda, B, Schumacher, JM:Weakly time consistent concave valuations and their dual representations.Finance Stochastics 20(1), 123-151 (2015),

[94]

Roorda, B, Schumacher, JM, Engwerda, J:Coherent acceptability measures in multiperiod models. Math.Finance 15(4), 589-612 (2005),

[95]

Rosazza Gianin, E:Convexity and law invariance of risk measures. PhD thesis, Universita de Bergamo, Italy (2002),

[96]

Rosazza Gianin, E:Risk measures via g-expectations. Insur. Math. Econ 39(1), 19-34 (2006),

[97]

Rosazza Gianin, E, Sgarra, E:Acceptability indexes via g-expectations:an application to liquidity risk.Math. Finance 7, 457-475 (2013),

[98]

Ruszczyński, A:Risk-averse dynamic programming for Markov decision processes. Math. Program 125(2), 235-261 (2010),

[99]

Ruszczyński, A, Shapiro, A:Conditional risk mappings. Math. Oper. Res 31(3), 544-561 (2006a),

[100]

Ruszczyński, A, Shapiro, A:Optimization of convex risk functions. Math. Oper. Res 31(3), 433-452(2006b),

[101]

Scandolo, G:Risk Measures in a Dynamic Setting. PhD thesis, Universitia degli Studi di Milano, Italy(2003),

[102]

Shapiro, A:On a time consistency concept in risk averse multistage stochastic programming. Oper. Res.Lett 37, 143-147 (2009),

[103]

Shapiro, A:A dynamic programming approach to adjustable robust optimization. Oper. Res. Lett 39, 83-87 (2011),

[104]

Shapiro, A:Time consistency of dynamic risk measures. Oper. Res. Lett 40(6), 436-439 (2012),

[105]

Sircar, R, Sturm, S:From smile asymptotics to market risk measures. Math. Finance 25(2), 400-425(2015),

[106]

Stadje, M:Extending dynamic convex risk measures from discrete time to continuous time:a convergence approach. Insurance Math. Econom 47(3), 391-404 (2010),

[107]

Szegö, G:Measures of ris. J. Bank. Finance 26, 1253-1272 (2002),

[108]

Tutsch, S:Update rules for convex risk measures. Quant. Finance 8(8), 833-843 (2008),

[109]

Vogelpoth, N:L0-convex Analysis and Conditional Risk Measures. PhD thesis, University of Vienna(2009),

[110]

Wang, T:A class of dynamic risk measures. J. Risk Uncertainty 17, 87-119 (2002),

[111]

Weber, S:Distribution-invariant risk measures, information, and dynamic consistency. Math. Finance 16(2), 419-441 (2006),

[112]

Whittle, P:Risk-sensitive optimal control. Wiley New York (1990),

[113]

Zariphopoulou, T, Žitković, G:Maturity independent risk measures. SIAM J. Financial Math 1, 266-288(2010),

[1]

Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1275-1283. doi: 10.3934/jimo.2015.11.1275

[2]

Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105

[3]

Welington Cordeiro, Manfred Denker, Xuan Zhang. On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1941-1957. doi: 10.3934/dcds.2017082

[4]

Welington Cordeiro, Manfred Denker, Xuan Zhang. Corrigendum to: On specification and measure expansiveness. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3705-3706. doi: 10.3934/dcds.2018160

[5]

Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524

[6]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[7]

Muberra Allahverdi, Harun Aydilek, Asiye Aydilek, Ali Allahverdi. A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020054

[8]

Chrystie Burr, Laura Gardini, Ferenc Szidarovszky. Discrete time dynamic oligopolies with adjustment constraints. Journal of Dynamics & Games, 2015, 2 (1) : 65-87. doi: 10.3934/jdg.2015.2.65

[9]

Sung Kyu Choi, Namjip Koo. Stability of linear dynamic equations on time scales. Conference Publications, 2009, 2009 (Special) : 161-170. doi: 10.3934/proc.2009.2009.161

[10]

B. Kaymakcalan, R. Mert, A. Zafer. Asymptotic equivalence of dynamic systems on time scales. Conference Publications, 2007, 2007 (Special) : 558-567. doi: 10.3934/proc.2007.2007.558

[11]

M. Baake, P. Gohlke, M. Kesseböhmer, T. Schindler. Scaling properties of the Thue–Morse measure. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4157-4185. doi: 10.3934/dcds.2019168

[12]

Zari Dzalilov, Iradj Ouveysi, Alexander Rubinov. An extended lifetime measure for telecommunication network. Journal of Industrial & Management Optimization, 2008, 4 (2) : 329-337. doi: 10.3934/jimo.2008.4.329

[13]

Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure & Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411

[14]

Oliver Jenkinson. Every ergodic measure is uniquely maximizing. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 383-392. doi: 10.3934/dcds.2006.16.383

[15]

Xiangfeng Yang. Stability in measure for uncertain heat equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6533-6540. doi: 10.3934/dcdsb.2019152

[16]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[17]

Hayden Schaeffer, John Garnett, Luminita A. Vese. A texture model based on a concentration of measure. Inverse Problems & Imaging, 2013, 7 (3) : 927-946. doi: 10.3934/ipi.2013.7.927

[18]

Fabio Camilli, Raul De Maio. Memory effects in measure transport equations. Kinetic & Related Models, 2019, 12 (6) : 1229-1245. doi: 10.3934/krm.2019047

[19]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[20]

Zhanyou Ma, Wenbo Wang, Wuyi Yue, Yutaka Takahashi. Performance analysis and optimization research of multi-channel cognitive radio networks with a dynamic channel vacation scheme. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020144

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (5)
  • Cited by (0)

[Back to Top]