[1]
|
Acciaio, B, Föllmer, H, Penner, I:Risk assessment for uncertain cash flows:model ambiguity, discounting ambiguity, and the role of bubbles. Finance Stochastics 16, 669-709 (2012)
|
[2]
|
Acciaio, B, Penner, I. In:Di Nunno, G, Øksendal, B (eds.):Dynamic risk measures, pp. 1-34. Springer(2011)
|
[3]
|
Artzner, P, Delbaen, F, Eber, JM, Heath, D:Coherent measures of risk. Math. Finance 9(3), 203-228(1999)
|
[4]
|
Artzner, P, Delbaen, F, Eber, JM, Heath, D, Ku, H:Coherent multiperiod risk measurement. Preprint(2002a)
|
[5]
|
Artzner, P, Delbaen, F, Eber, JM, Heath, D, Ku, H:Multiperiod risk and coherent multiperiod risk measurement. Mimeo. ETH ZLurich, Switzerland (2002b)
|
[6]
|
Artzner, P, Delbaen, F, Eber, JM, Heath, D, Ku, H:Coherent multiperiod risk adjusted values and Bellman's principle. Ann. Oper. Res 152, 5-22 (2007)
|
[7]
|
Barron, EN, Cardaliaguet, P, Jensen, R:Conditional essential suprema with applications. Appl. Math.Optim 48(3), 229-253 (2003)
|
[8]
|
Barrieu, P, El Karoui, N:Optimal derivatives design under dynamic risk measures. Mathematics of finance, volume 351 of Contemp. Math, pp. 13-25 (2004). Amer. Math. Soc Barrieu, P, El Karoui, N:Inf-convolution of risk measures and optimal risk transfer. Finance Stoch 9(2), 269-298 (2005)
|
[9]
|
Barrieu, P, El Karoui, N:Pricing, hedging and optimally designing derivatives via minimization of risk measures. In:Carmona, R (ed.) Indifference Pricing. Princeton University Press (2007)
|
[10]
|
Bellman, RE, Dreyfus, SE:Applied dynamic programming. Princeton University Press (1962)
|
[11]
|
Biagini, S, Bion-Nadal, J:Dynamic quasi-concave performance measures. J. Math. Econ 55, 143-153(2014)
|
[12]
|
Bielecki, TR, Pliska, SR:Economic properties of the risk sensitive criterion for portfolio management.Rev. Account. Finance 2, 3-17 (2003)
|
[13]
|
Bielecki, TR, Cialenco, I, Iyigunler, I, Rodriguez, R:Dynamic Conic Finance:Pricing and hedging via dynamic coherent acceptability indices with transaction costs. Int. J. Theor. Appl. Finance 16(01), 1350002 (2013)
|
[14]
|
Bielecki, TR, Cialenco, I, Pitera, M:A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time. Preprint (2014a)
|
[15]
|
Bielecki, TR, Cialenco, I, Zhang, Z:Dynamic coherent acceptability indices and their applications to finance. Math. Finance 24(3), 411-441 (2014b)
|
[16]
|
Bielecki, TR, Cialenco, I, Pitera, M:Dynamic limit growth indices in discrete time. Stochastic Models 31, 494-523 (2015a)
|
[17]
|
Bielecki, TR, Cialenco, I, Chen, T:Dynamic conic finance via Backward Stochastic Difference Equations.SIAM J. Finan. Math 6(1), 1068-1122 (2015b)
|
[18]
|
Bielecki, TR, Cialenco, I, Drapeau, S, Karliczek, M:Dynamic assessment indices. Stochastics:Int. J.Probab. Stochastic Process 88(1), 1-44 (2016)
|
[19]
|
Bion-Nadal, J:Dynamic risk measures:time consistency and risk measures from BMO martingales.Finance Stoch 12(2), 219-244 (2008)
|
[20]
|
Bion-Nadal, J:Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk. J.Math. Econ 45(11), 738-750 (2009a)
|
[21]
|
Bion-Nadal, J:Time consistent dynamic risk processes. Stochastic Process. Appl 119(2), 633-654 (2009b)
|
[22]
|
Bion-Nadal, J:Dynamic risk measures and path-dependent second order PDEs. In:Espen Benth, F, Di Nunno, G (eds.) Stochastics of Environmental and Financial Economics, volume 138 of Springer Proceedings in Mathematics & Statistics, pp. 147-178. Springer (2016)
|
[23]
|
Boda, K, Filar, J:Time consistent dynamic risk measures. Math. Methods Oper. Res 63(1), 169-186 (2006)
|
[24]
|
Bion-Nadal, J, Kervarec, M:Dynamic risk measuring under model uncertainty:taking advantage of the hidden probability measure. Preprint (2010)
|
[25]
|
Bion-Nadal, J, Kervarec, M:Risk measuring under model uncertainty. Ann. App. Prob 1, 213-238 (2012)
|
[26]
|
Carpentier, P, Chancelier, JP, Cohen, G, De Lara, M, Girardeau, P:Dynamic consistency for stochastic optimal control problems. Ann. Oper. Res 200(1), 247-263 (2012)
|
[27]
|
Cheridito, P, Kupper, M:Recursiveness of indifference prices and translation-invariant preferences. Math.Financ. Econ 2(3), 173-188 (2009)
|
[28]
|
Cheridito, P, Kupper, M:Composition of time-consistent dynamic monetary risk measures in discrete time. Int. J. Theor. Appl. Finance 14(1), 137-162 (2011)
|
[29]
|
Cheridito, P, Li, T:Dual characterization of properties of risk measures on Orlicz hearts. Math. Financ.Econ 2(1), 29-55 (2008)
|
[30]
|
Cheridito, P, Li, T:Risk measures on Orlicz hearts. Math. Finance 19(2), 189-214 (2009)
|
[31]
|
Cherny, A:Weighted V@R and its properties. Finance Stoch 10(3), 367-393 (2006)
|
[32]
|
Cherny, A:Pricing and hedging European options with discrete-time coherent risk. Finance Stoch 11(4), 537-569 (2007)
|
[33]
|
Cherny, A:Capital allocation and risk contribution with discrete-time coherent risk. Math. Finance 19(1), 13-40 (2009)
|
[34]
|
Cherny, A:Risk-reward optimization with discrete-time coherent risk. Math. Finance 20(4), 571-595(2010)
|
[35]
|
Cherny, A, Madan, DB:Pricing and hedging in incomplete markets with coherent risk, 21 (2006). https://ssrn.com/abstract=904806
|
[36]
|
Cherny, A, Madan, DB:New measures for performance evaluation. Rev. Financial Stud 22(7), 2571-2606(2009)
|
[37]
|
Cherny, A, Madan, DB:Markets as a counterparty:An introduction to conic finance. Int. J. Theor. Appl.Finance (IJTAF) 13(08), 1149-1177 (2010)
|
[38]
|
Cheridito, P, Delbaen, F, Kupper, M:Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab 11(3), 57-106 (2006)
|
[39]
|
Cheridito, P, Stadje, M:Time-inconsistency of VaR and time-consistent alternatives. Finance Res. Lett 6(1), 40-46 (2009)
|
[40]
|
Cohen, SN, Elliott, RJ:A general theory of finite state backward stochastic difference equations.Stochastic Process. Appl 120(4), 442-466 (2010)
|
[41]
|
Cohen, SN, Elliott, RJ:Backward stochastic difference equations and nearly-time-consistent nonlinear expectations. SIAM J. Control Optim 49(1), 125-139 (2011)
|
[42]
|
Coquet, F, Hu, Y, Mémin, J, Peng, S:Filtration-consistent nonlinear expectations and related g-xpectations. Probab. Theory Relat. Fields 123(1), 1-27 (2002)
|
[43]
|
Davis, M, Lleo, S:Risk-Sensitive Investment Management, volume 19 of Advanced Series on Statistical Science & Applied Probability. World Sci (2014)
|
[44]
|
Delbaen, F:Coherent risk measures. Scuola Normale Superiore (2000)
|
[45]
|
Delbaen, F:Coherent risk measures on general probability spaces. Advances in finance and stochastics, pp. 1-37. Springer (2002)
|
[46]
|
Delbaen, F:The structure of m-stable sets and in particular of the set of risk neutral measures. In memoriam Paul-André Meyer:Séminaire de Probabilités XXXIX, volume 1874 of Lecture Notes in Math., pp. 215-258. Springer, Berlin (2006)
|
[47]
|
Delbaen, F:Monetary Utility Functions, volume 3 of CSFI Lecture Notes Series. Osaka University Press(2012)
|
[48]
|
Delbaen, F, Peng, S, Rosazza Gianin, E:Representation of the penalty term of dynamic concave utilities.Finance Stoch 14, 449-472 (2010)
|
[49]
|
Detlefsen, K, Scandolo, G:Conditional and dynamic convex risk measures. Finance Stochastics 9(4), 539-561 (2005)
|
[50]
|
Drapeau, S:Risk Preferences and their Robust Representation. PhD thesis, Humboldt Universität zu Berlin (2010)
|
[51]
|
Drapeau, S, Kupper, M:Risk preferences and their robust representation. Math. Oper. Res 38(1), 28-62(2013)
|
[52]
|
Elliott, RJ, Siu, TK, Cohen, SN:Backward stochastic difference equations for dynamic convex risk measures on a binomial tree. J. Appl. Probab 52(3), 2015 (2015)
|
[53]
|
Epstein, LG, Schneider, M:Recursive multiple-priors. J. Econom. Theory 113(1), 1-31 (2003)
|
[54]
|
Fan, J, Ruszczyński, A:Process-based risk measures for observable and partially observable discrete-time controlled systems. Preprint (2014)
|
[55]
|
Fasen, V, Svejda, A:Time consistency of multi-period distortion measures. Stat. Risk Model 29(2), 133-153 (2012)
|
[56]
|
Feinstein, Z, Rudloff, B:Time consistency of dynamic risk measures in markets with transaction costs.Quant. Finance 13(9), 1473-1489 (2013)
|
[57]
|
Feinstein, Z, Rudloff, B:Multi-portfolio time consistency for set-valued convex and coherent risk measures. Finance Stochastics 19(1), 67-107 (2015)
|
[58]
|
Filipovic, D, Kupper, M, Vogelpoth, N:Separation and duality in locally L0-convex modules. J. Funct.Anal 256, 3996-4029 (2009)
|
[59]
|
Frittelli, M, Maggis, M:Conditional certainty equivalent. Int. J. Theor. Appl. Fin 14(1), 41-59(2010)
|
[60]
|
Frittelli, M, Maggis, M:Dual representation of quasiconvex conditional maps. SIAM J. Fin. Math 2, 357-382 (2011)
|
[61]
|
Frittelli, M, Maggis, M:Complete duality for quasiconvex dynamic risk measures on modules of the lp-type. Stat. Risk Model 31(1), 103-128 (2014)
|
[62]
|
Frittelli, M, Rosazza Gianin, E:Dynamic convex measures. Risk Measures in 21st Century, G. Szegö ed., pp. 227-248 (2004). J. Wiley
|
[63]
|
Frittelli, M, Scandolo, G:Risk measures and capital requirements for processes. Math. Finance 16(4), 589-612 (2006)
|
[64]
|
Föllmer, H, Penner, I:Convex risk measures and the dynamics of their penalty functions. Statist. Decis 24(1), 61-96 (2006)
|
[65]
|
Föllmer, H, Penner, I:Monetary valuation of cash flows under Knightian uncertainty. Int. J. Theor. Appl. Finance 14(1), 1-15 (2011)
|
[66]
|
Föllmer, H, Schied, A:Stochastic finance. An introduction in discrete time, volume 27 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, extended edition (2004)
|
[67]
|
Föllmer, H, Schied, A:Convex risk measures. Encyclopedia of Quantitative Finance (2010)
|
[68]
|
Geman, H, Ohana, S:Time-consistency in managing a commodity portfolio:A dynamic risk measure approach. J. Bank. Finance 32, 1991-2005 (2008)
|
[69]
|
Gerber, HU:On iterative premium calculation principles. Bulletin of the Swiss Association of Actuaries 74, 163-172 (1974)
|
[70]
|
Gilboa, I, Schmeidler, D:Maxmin expected utility with nonunique prior. J. Math. Econom 18(2), 141-153(1989)
|
[71]
|
Goovaerts, MJ, De Vylder, F:A note on iterative premium calculation principles. ASTIN Bull 10(3), 325-329 (1979)
|
[72]
|
Hamel, A, Heyde, F, Rudloff, B:Set-valued risk measures for conical market models. Math. Financial Econ 5(1), 1-28 (2011)
|
[73]
|
Hamel, A, Rudloff, B:Continuity and Finite-Valuedness of Set-Valued Risk Measures. Festschrift in Celebration of Prof. Dr. Wilfried Grecksch's 60th Birthday. Shaker, pp. 49-64 (2008)
|
[74]
|
Hamel, A, Rudloff, B, Yankova, M:Set-valued average value at risk and its computation. Math. Financial Econ 7(2), 229-246 (2013)
|
[75]
|
Iancu, DA, Petrik, M, Subramanian, D:Tight approximations of dynamic risk measures. Math. Oper. Res 40(3), 655-682 (2015)
|
[76]
|
Jiang, L:Convexity, translation invariance and subadditivity for g-epectations and related risk measures.Ann. Appl. Probab 18(1), 245-258 (2008)
|
[77]
|
Jobert, A, Rogers, LCG:Valuations and dynamic convex risk measures. Math. Finance 18(1), 1-22 (2008)
|
[78]
|
Kaina, M, Rüschendorf, L:On convex risk measures on Lp-spaces. Math. Methods Oper. Res 69(3), 475-495 (2009)
|
[79]
|
Karatzas, I, Shreve, SE:Methods of mathematical finance. Springer (1998)
|
[80]
|
Klöppel, S, Schweizer, M:Dynamic indifference valuation via convex risk measures. Math. Finance 17(4), 599-627 (2007)
|
[81]
|
Koopmans, TC:Stationary ordinal utility and impatience. Econometrica 28, 287-309 (1960)
|
[82]
|
Kreps, DM, Porteus, EL:Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46(1), 185-200 (1978)
|
[83]
|
Kupper, M, Schachermayer, W:Representation results for law invariant time consistent functions. Math.Financial Econ 2(3), 189-210 (2009)
|
[84]
|
Mastrogiacomo, E, Rosazza Gianin, E:Time-consistency of cash-subadditive risk measures. Preprint(2015)
|
[85]
|
Nutz, M, Soner, HM:Superhedging and dynamic risk measures under volatility uncertainty. SIAM J.Control Optimization 50(4), 2065-2089 (2012)
|
[86]
|
Peng, S:Backward SDE and related g-expectations. Backward Stochastic Diff. Equations Pitman Res.Notes Math. Series 364, 141-159 (1997)
|
[87]
|
Peng, S:Nonlinear expectations, nonlinear evaluations and risk measures. Stochastic methods in finance, volume 1856 of Lecture Notes in Math, pp. 165-253. Springer, Berlin (2004)
|
[88]
|
Penner, I:Dynamic Convex Risk Measures:Time Consistency, Prudence, and Sustainability. PhD thesis, Humboldt Universität zu Berlin (2007)
|
[89]
|
Penner, I, Réveillac, A:Risk measures for processes and bsdes. Finance Stochastics 19(1), 23-66 (2014)
|
[90]
|
Pitera, M:Selected problems on discrete time stochastic control for dynamic risk and performance measures. PhD thesis, Jagiellonian University (2014)
|
[91]
|
Riedel, F:Dynamic coherent risk measures. Stochastic Process. Appl 112(2), 185-200 (2004)
|
[92]
|
Roorda, B, Schumacher, JM:Time consistency conditions for acceptability measures, with an application to Tail Value at Risk. Insurance Math. Econom 40(2), 209-230 (2007)
|
[93]
|
Roorda, B, Schumacher, JM:Weakly time consistent concave valuations and their dual representations.Finance Stochastics 20(1), 123-151 (2015)
|
[94]
|
Roorda, B, Schumacher, JM, Engwerda, J:Coherent acceptability measures in multiperiod models. Math.Finance 15(4), 589-612 (2005)
|
[95]
|
Rosazza Gianin, E:Convexity and law invariance of risk measures. PhD thesis, Universita de Bergamo, Italy (2002)
|
[96]
|
Rosazza Gianin, E:Risk measures via g-expectations. Insur. Math. Econ 39(1), 19-34 (2006)
|
[97]
|
Rosazza Gianin, E, Sgarra, E:Acceptability indexes via g-expectations:an application to liquidity risk.Math. Finance 7, 457-475 (2013)
|
[98]
|
Ruszczyński, A:Risk-averse dynamic programming for Markov decision processes. Math. Program 125(2), 235-261 (2010)
|
[99]
|
Ruszczyński, A, Shapiro, A:Conditional risk mappings. Math. Oper. Res 31(3), 544-561 (2006a)
|
[100]
|
Ruszczyński, A, Shapiro, A:Optimization of convex risk functions. Math. Oper. Res 31(3), 433-452(2006b)
|
[101]
|
Scandolo, G:Risk Measures in a Dynamic Setting. PhD thesis, Universitia degli Studi di Milano, Italy(2003)
|
[102]
|
Shapiro, A:On a time consistency concept in risk averse multistage stochastic programming. Oper. Res.Lett 37, 143-147 (2009)
|
[103]
|
Shapiro, A:A dynamic programming approach to adjustable robust optimization. Oper. Res. Lett 39, 83-87 (2011)
|
[104]
|
Shapiro, A:Time consistency of dynamic risk measures. Oper. Res. Lett 40(6), 436-439 (2012)
|
[105]
|
Sircar, R, Sturm, S:From smile asymptotics to market risk measures. Math. Finance 25(2), 400-425(2015)
|
[106]
|
Stadje, M:Extending dynamic convex risk measures from discrete time to continuous time:a convergence approach. Insurance Math. Econom 47(3), 391-404 (2010)
|
[107]
|
Szegö, G:Measures of ris. J. Bank. Finance 26, 1253-1272 (2002)
|
[108]
|
Tutsch, S:Update rules for convex risk measures. Quant. Finance 8(8), 833-843 (2008)
|
[109]
|
Vogelpoth, N:L0-convex Analysis and Conditional Risk Measures. PhD thesis, University of Vienna(2009)
|
[110]
|
Wang, T:A class of dynamic risk measures. J. Risk Uncertainty 17, 87-119 (2002)
|
[111]
|
Weber, S:Distribution-invariant risk measures, information, and dynamic consistency. Math. Finance 16(2), 419-441 (2006)
|
[112]
|
Whittle, P:Risk-sensitive optimal control. Wiley New York (1990)
|
[113]
|
Zariphopoulou, T, Žitković, G:Maturity independent risk measures. SIAM J. Financial Math 1, 266-288(2010)
|