Advanced Search
Article Contents
Article Contents

On the compensator of the default process in an information-based model

supported by the European Community's FP 7 Program under contract PITN-GA-2008-213841, and Marie Curie ITN 《 Controlled Systems 》.
Abstract Related Papers Cited by
  • This paper provides sufficient conditions for the time of bankruptcy (of a company or a state) for being a totally inaccessible stopping time and provides the explicit computation of its compensator in a framework where the flow of market information on the default is modelled explicitly with a Brownian bridge between 0 and 0 on a random time interval.


    \begin{equation} \\ \end{equation}
  • [1]

    Aven, T:A theorem for determining the compensator of a counting process. Scand. J. Stat 12, 62-72 (1985)


    Bedini, ML:Information on a Default Time:Brownian Bridges on Stochastic Intervals and Enlargement of Filtrations. Dissertation, Friedrich-Schiller-Universität (2012)


    Bedini, ML, Buckdahn, R, Engelbert, HJ:Brownian bridges on random intervals. Teor. Veroyatnost. i Primenen 61:1, 129-157 (2016)


    Bedini, ML, Hinz, M:Credit default prediction and parabolic potential theory. Statistics & Probability Letters 124, 121-125 (2017)


    Giesecke, K:Default and information. J. Econ. Dyn. Control 30, 2281-2303 (2006)


    Jarrow, R, Protter, P:Structural versus Reduced Form Models:A New Information Based Perspective. J.Invest. Manag 2(2), 1-10 (2004). Second Quarter


    Jeanblanc, M, Le Cam, Y:Progressive enlargement of filtrations with initial times. Stoch. Proc. Appl. 119(8), 2523-2543 (2009)


    Jeanblanc, M, Le Cam, Y:Immersion property and Credit Risk Modelling. In:Delbaen, F, Miklós, Kallenberg, O Foundations of Modern Probability, Second edition. Springer-Verlag, New-York (2002)


    Karatzas, I, Shreve, S Brownian Motion and Stochastic Calculus, Second edition. Springer-Verlag, Berlin(1991)


    Meyer, PA:Probability and Potentials. Blaisdail Publishing Company, London (1966)


    Revuz, D, Yor, M Continuous Martingales and Brownian Motion, Third edition. Springer-Verlag, Berlin(1999)


    Rogers, LCG, Williams, D Diffusions, Markov Processes and Martingales. Vol. 2:Itô Calculus, Second edition. Cambridge University Press, Cambridge (2000)

  • 加载中

Article Metrics

HTML views(857) PDF downloads(36) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint