[1]
|
Azizpour, S, Giesecke, K, Schwenkler, G:Exploring the sources of default clustering. J. Finan. Econom.Forthcoming (2017)
|
[2]
|
Belanger, A, Shreve, S, Wong, D:A general framework for pricing credit risk. Math. Finan 14, 317-350(2004)
|
[3]
|
Bielecki, T, Jang, I:Portfolio optimization with a defaultable security. Asia-Pacific Finan. Markets 13, 113-127 (2006)
|
[4]
|
Bielecki, T, Jeanblanc, M, Rutkowski, M:Pricing and trading credit default swaps in a hazard process model. Ann. Appl. Probab 18, 2495-2529 (2008)
|
[5]
|
Bielecki, T, Rutkowski, M:Valuation and hedging of contracts with funding costs and collateralization.SIAM J. Finan. Math 6, 594-655 (2015)
|
[6]
|
Bo, L, Wang, Y, Yang, X:An optimal portfolio problem in a defaultable market. Adv. Appl. Probab 42, 689-705 (2010)
|
[7]
|
Bo, L, Capponi, A:Optimal investment in credit derivatives portfolio under contagion risk. Math. Finan 26, 785-834 (2016)
|
[8]
|
Bo, L, Capponi, A:Optimal credit investment with borrowing costs. Math Oper. Res 42, 546-575 (2017)
|
[9]
|
Capponi, A, Figueroa-López, JE:Dynamics portfolio optimization with a defaultable security and regime-switching. Math Finan 24, 207-249 (2014)
|
[10]
|
Chen, H:Macroeconomic conditions and the puzzles of credit spreads and capital structure. J. Finan 65, 2171-2212 (2010)
|
[11]
|
Crépey, S:Bilateral counterparty risk under funding constraints. Part I:pricing. Math Finan 25, 23-50(2015)
|
[12]
|
Cvitanić, J, Karatzas, I:Hedging contingent claims with constrained portfolios. Ann. Appl. Probab 3, 652-681 (1993)
|
[13]
|
Draouil, O, Oksendal, B:A donsker delta functional approach to optimal insider control and applications to finance. Commun. Math Stats 3, 365-421 (2015)
|
[14]
|
Duffie, D, Singleton, K:Credit Risk. Princeton University Press, Princeton (2003)
|
[15]
|
El Karoui, N, Peng, S, Quenez, MC:Backward stochastic differential equations in finance. Math Finan 7, 1-71 (1997)
|
[16]
|
Frey, R, Backhaus, J:Pricing and hedging of portfolio credit derivatives with interacting default intensities.Int. J. Theor. Appl. Finan 11, 611-634 (2008)
|
[17]
|
Giesecke, K, Kim, B, Kim, J, Tsoukalas, G:Optimal credit swap portfolios. Manage Sci 60, 2291-2307(2014)
|
[18]
|
Jarrow, R, Yu, F:Counterparty risk and the pricing of defaultable securities. J. Finan 56, 1765-1799 (2001)
|
[19]
|
Jiao, Y, Pham, H:Optimal investment with counterparty risk:a default density approach. Finan. Stoch 15, 725-753 (2011)
|
[20]
|
Korn, R:Contingent claim valuation in a market with different interest rates. Math. Meth. Oper. Res 42, 255-274 (1995)
|
[21]
|
Korn, R, Kraft, H:Optimal portfolios with defaultable securities-a firm value approach. Int. J. Theor. Appl.Finan 6, 793-819 (2003)
|
[22]
|
Kraft, H, Steffensen, M:Portfolio problems stopping at first hitting time with application to default risk.Math. Meth. Oper. Res 63, 123-150 (2005)
|
[23]
|
Kumagai, S:An implicit function theorem:comment. J. Optim. Theor. Appl 31, 285-288 (1980)
|
[24]
|
Mercurio, F:Bergman, Piterbarg, and Beyond:pricing derivatives under collateralization and differential rates. In:Londoño, J, Garrido, J, Hernández-Hernández, D (eds.) Actuarial Sciences and Quantitative
|
[25]
|
Finance. Springer Proceedings in Mathematics & Statistics, vol 135. Springer, Cham (2015)
|