January  2018, 3: 1 doi: 10.1186/s41546-017-0025-4

Continuous tenor extension of affine LIBOR models with multiple curves and applications to XVA

1. Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;

2. Institut fur Mathematische Stochastik, TU Dresden, 01062 Dresden, Germany

Received  January 31, 2017 Revised  November 26, 2017 Published  January 2018

Fund Project: RW acknowledges funding from the Excellence Initiative of the German Research Foundation (DFG) under grant ZUK 64. Financial support from the Europlace Institute of Finance project "Post-crisis models for interest rate markets" is gratefully acknowledged.

We consider the class of affine LIBOR models with multiple curves, which is an analytically tractable class of discrete tenor models that easily accommodates positive or negative interest rates and positive spreads. By introducing an interpolating function, we extend the affine LIBOR models to a continuous tenor and derive expressions for the instantaneous forward rate and the short rate. We show that the continuous tenor model is arbitrage-free, that the analytical tractability is retained under the spot martingale measure, and that under mild conditions an interpolating function can be found such that the extended model fits any initial forward curve. This allows us to compute value adjustments (i.e. XVAs) consistently, by solving the corresponding ‘pre-default’ BSDE. As an application, we compute the price and value adjustments for a basis swap, and study the model risk associated to different interpolating functions.
Citation: Antonis Papapantoleon, Robert Wardenga. Continuous tenor extension of affine LIBOR models with multiple curves and applications to XVA. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 1-. doi: 10.1186/s41546-017-0025-4
References:
[1]

Beveridge, C, Joshi, M:Interpolation schemes in the displaced-diffusion LIBOR market model. SIAM. J. Finan. Math. 3, 593-604 (2012) Google Scholar

[2]

Bichuch, M, Capponi, A, Sturm, S:Arbitrage-free XVA. Math.Finan. (2016). https://arxiv.org/abs/1608.02690 Google Scholar

[3]

Björk, T:Arbitrage Theory in Continuous Time, 3rd edition. Oxford University Press, Chichester (2009) Google Scholar

[4]

Brigo, D, Morini, M, Pallavicini, A:Counterparty Credit Risk, Collateral and Funding:with Pricing Cases for all Asset Classes. Wiley (2013) Google Scholar

[5]

Crépey, S:Bilateral Counterparty risk under funding constraints-Part I:Pricing. Math. Finan. 25, 1-22(2015a) Google Scholar

[6]

Crépey, S:Bilateral Counterparty risk under funding constraints-Part II:CVA. Math. Finan. 25, 23-50(2015b) Google Scholar

[7]

Crépey, S, Bielecki, TR:Counterparty Risk and Funding:A Tale of two Puzzles. Chapman & Hall/CRC Financial Mathematics Series. CRC Press, Boca Raton (2014). With an introductory dialogue by Damiano Brigo Google Scholar

[8]

Crépey, S, Grbac, Z, Nguyen, H-N:A multiple-curve HJM model of interbank risk. Math. Financ. Econ. 6, 155-190 (2012) Google Scholar

[9]

Crépey, S, Gerboud, R, Grbac, Z, Ngor, N:Counterparty risk and funding:The four wings of the TVA. Int. J. Theor. Appl. Financ. 16(1350006) (2013) Google Scholar

[10]

Crépey, S, Grbac, Z, Ngor, N, Skovmand, D:A Lévy HJM multiple-curve model with application to CVA computation. Quant. Financ. 15, 401-419 (2015) Google Scholar

[11]

Cuchiero, C, Fontana, C, Gnoatto, A:Affine multiple yield curve models. Preprint. arXiv:1603.00527(2016) Google Scholar

[12]

Duffie, D, Filipovic, D, Schachermayer, W:Affine processes and applications in finance. Ann. Appl. Probab. 13, 984-1053 (2003) Google Scholar

[13]

Filipović, D:Time-inhomogeneous affine processes. Stoch. Process. Appl. 115, 639-659 (2005) Google Scholar

[14]

Glau, K, Grbac, Z, Papapantoleon, A:A unified view of LIBOR models. In:Kallsen, J, Papapantoleon, A (eds.) Advanced Modelling in Mathematical Finance-In Honour of Ernst Eberlein, pp. 423-452. Springer, Cham (2016) Google Scholar

[15]

Grbac, Z, Runggaldier, WJ:Interest Rate Modeling:Post-Crisis Challenges and Approaches. Springer, Cham (2015) Google Scholar

[16]

Grbac, Z, Papapantoleon, A, Schoenmakers, J, Skovmand, D:Affine LIBOR models with multiple curves:theory, examples and calibration. SIAM. J. Financ. Math. 6, 984-1025 (2015) Google Scholar

[17]

Jacod, J, Shiryaev, AN:Limit Theorems for Stochastic Processes, 2nd edition. Springer, Berlin Heidelberg (2003) Google Scholar

[18]

Keller-Ressel, M:Affine Processes:Theory and Applications to Finance. PhD thesis, TU Vienna (2008) Google Scholar

[19]

Keller-Ressel, M:Affine LIBOR models with continuous tenor (2009). Unpublished manuscript Keller-Ressel, M, Papapantoleon, A, Teichmann, J:The affine LIBOR models. Math. Financ. 23, 627-658(2013) Google Scholar

[20]

Mercurio, F:Interest rates and the credit crunch:New formulas and market models. Preprint. SSRN/1332205 (2009) Google Scholar

[21]

Mercurio, F:A LIBOR market model with a stochastic basis. Risk. 84-89 (2010) Google Scholar

[22]

Musiela, M, Rutkowski, M:Continuous-time term structure models:forward measure approach. Financ. Stoch. 1, 261-291 (1997) Google Scholar

[23]

Musiela, M, Rutkowski, M::Martingale Methods in Financial Modelling, 2nd edition. Springer, Berlin Heidelberg (2005) Google Scholar

[24]

Papapantoleon, A:Old and new approaches to LIBOR modeling. Stat. Neerlandica. 64, 257-275 (2010) Google Scholar

show all references

References:
[1]

Beveridge, C, Joshi, M:Interpolation schemes in the displaced-diffusion LIBOR market model. SIAM. J. Finan. Math. 3, 593-604 (2012) Google Scholar

[2]

Bichuch, M, Capponi, A, Sturm, S:Arbitrage-free XVA. Math.Finan. (2016). https://arxiv.org/abs/1608.02690 Google Scholar

[3]

Björk, T:Arbitrage Theory in Continuous Time, 3rd edition. Oxford University Press, Chichester (2009) Google Scholar

[4]

Brigo, D, Morini, M, Pallavicini, A:Counterparty Credit Risk, Collateral and Funding:with Pricing Cases for all Asset Classes. Wiley (2013) Google Scholar

[5]

Crépey, S:Bilateral Counterparty risk under funding constraints-Part I:Pricing. Math. Finan. 25, 1-22(2015a) Google Scholar

[6]

Crépey, S:Bilateral Counterparty risk under funding constraints-Part II:CVA. Math. Finan. 25, 23-50(2015b) Google Scholar

[7]

Crépey, S, Bielecki, TR:Counterparty Risk and Funding:A Tale of two Puzzles. Chapman & Hall/CRC Financial Mathematics Series. CRC Press, Boca Raton (2014). With an introductory dialogue by Damiano Brigo Google Scholar

[8]

Crépey, S, Grbac, Z, Nguyen, H-N:A multiple-curve HJM model of interbank risk. Math. Financ. Econ. 6, 155-190 (2012) Google Scholar

[9]

Crépey, S, Gerboud, R, Grbac, Z, Ngor, N:Counterparty risk and funding:The four wings of the TVA. Int. J. Theor. Appl. Financ. 16(1350006) (2013) Google Scholar

[10]

Crépey, S, Grbac, Z, Ngor, N, Skovmand, D:A Lévy HJM multiple-curve model with application to CVA computation. Quant. Financ. 15, 401-419 (2015) Google Scholar

[11]

Cuchiero, C, Fontana, C, Gnoatto, A:Affine multiple yield curve models. Preprint. arXiv:1603.00527(2016) Google Scholar

[12]

Duffie, D, Filipovic, D, Schachermayer, W:Affine processes and applications in finance. Ann. Appl. Probab. 13, 984-1053 (2003) Google Scholar

[13]

Filipović, D:Time-inhomogeneous affine processes. Stoch. Process. Appl. 115, 639-659 (2005) Google Scholar

[14]

Glau, K, Grbac, Z, Papapantoleon, A:A unified view of LIBOR models. In:Kallsen, J, Papapantoleon, A (eds.) Advanced Modelling in Mathematical Finance-In Honour of Ernst Eberlein, pp. 423-452. Springer, Cham (2016) Google Scholar

[15]

Grbac, Z, Runggaldier, WJ:Interest Rate Modeling:Post-Crisis Challenges and Approaches. Springer, Cham (2015) Google Scholar

[16]

Grbac, Z, Papapantoleon, A, Schoenmakers, J, Skovmand, D:Affine LIBOR models with multiple curves:theory, examples and calibration. SIAM. J. Financ. Math. 6, 984-1025 (2015) Google Scholar

[17]

Jacod, J, Shiryaev, AN:Limit Theorems for Stochastic Processes, 2nd edition. Springer, Berlin Heidelberg (2003) Google Scholar

[18]

Keller-Ressel, M:Affine Processes:Theory and Applications to Finance. PhD thesis, TU Vienna (2008) Google Scholar

[19]

Keller-Ressel, M:Affine LIBOR models with continuous tenor (2009). Unpublished manuscript Keller-Ressel, M, Papapantoleon, A, Teichmann, J:The affine LIBOR models. Math. Financ. 23, 627-658(2013) Google Scholar

[20]

Mercurio, F:Interest rates and the credit crunch:New formulas and market models. Preprint. SSRN/1332205 (2009) Google Scholar

[21]

Mercurio, F:A LIBOR market model with a stochastic basis. Risk. 84-89 (2010) Google Scholar

[22]

Musiela, M, Rutkowski, M:Continuous-time term structure models:forward measure approach. Financ. Stoch. 1, 261-291 (1997) Google Scholar

[23]

Musiela, M, Rutkowski, M::Martingale Methods in Financial Modelling, 2nd edition. Springer, Berlin Heidelberg (2005) Google Scholar

[24]

Papapantoleon, A:Old and new approaches to LIBOR modeling. Stat. Neerlandica. 64, 257-275 (2010) Google Scholar

[1]

Lixin Wu, Fan Zhang. LIBOR market model with stochastic volatility. Journal of Industrial & Management Optimization, 2006, 2 (2) : 199-227. doi: 10.3934/jimo.2006.2.199

[2]

Abhyudai Singh, Roger M. Nisbet. Variation in risk in single-species discrete-time models. Mathematical Biosciences & Engineering, 2008, 5 (4) : 859-875. doi: 10.3934/mbe.2008.5.859

[3]

S. Mohamad, K. Gopalsamy. Neuronal dynamics in time varying enviroments: Continuous and discrete time models. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 841-860. doi: 10.3934/dcds.2000.6.841

[4]

Adrian Tudorascu. On absolutely continuous curves of probabilities on the line. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5105-5124. doi: 10.3934/dcds.2019207

[5]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[6]

Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Hybrid discrete-continuous model of invasive bladder cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 729-742. doi: 10.3934/mbe.2013.10.729

[7]

Laurent Devineau, Pierre-Edouard Arrouy, Paul Bonnefoy, Alexandre Boumezoued. Fast calibration of the Libor market model with stochastic volatility and displaced diffusion. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1699-1729. doi: 10.3934/jimo.2019025

[8]

Stefan Erickson, Michael J. Jacobson, Jr., Andreas Stein. Explicit formulas for real hyperelliptic curves of genus 2 in affine representation. Advances in Mathematics of Communications, 2011, 5 (4) : 623-666. doi: 10.3934/amc.2011.5.623

[9]

Uri M. Ascher. Discrete processes and their continuous limits. Journal of Dynamics & Games, 2020, 7 (2) : 123-140. doi: 10.3934/jdg.2020008

[10]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1635-1654. doi: 10.3934/jimo.2019021

[11]

Sigurdur F. Hafstein, Christopher M. Kellett, Huijuan Li. Computing continuous and piecewise affine lyapunov functions for nonlinear systems. Journal of Computational Dynamics, 2015, 2 (2) : 227-246. doi: 10.3934/jcd.2015004

[12]

Jean-Bernard Baillon, Guillaume Carlier. From discrete to continuous Wardrop equilibria. Networks & Heterogeneous Media, 2012, 7 (2) : 219-241. doi: 10.3934/nhm.2012.7.219

[13]

Jeong-Yup Lee, Boris Solomyak. Pisot family self-affine tilings, discrete spectrum, and the Meyer property. Discrete & Continuous Dynamical Systems, 2012, 32 (3) : 935-959. doi: 10.3934/dcds.2012.32.935

[14]

Fred Brauer, Zhilan Feng, Carlos Castillo-Chávez. Discrete epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (1) : 1-15. doi: 10.3934/mbe.2010.7.1

[15]

Marianito R. Rodrigo, Rogemar S. Mamon. Bond pricing formulas for Markov-modulated affine term structure models. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2685-2702. doi: 10.3934/jimo.2020089

[16]

James H. Lambert, Benjamin L. Schulte, Nilesh N. Joshi. Multiple criteria intelligence tracking for detecting extremes from sequences of risk incidents. Journal of Industrial & Management Optimization, 2008, 4 (3) : 511-533. doi: 10.3934/jimo.2008.4.511

[17]

Yinying Duan, Yong Ye, Zhichao Liu. Risk assessment for enterprise merger and acquisition via multiple classifier fusion. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 747-759. doi: 10.3934/dcdss.2019049

[18]

André Nachbin. Discrete and continuous random water wave dynamics. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1603-1633. doi: 10.3934/dcds.2010.28.1603

[19]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[20]

Yuanyuan Feng, Lei Li, Jian-Guo Liu, Xiaoqian Xu. Continuous and discrete one dimensional autonomous fractional ODEs. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3109-3135. doi: 10.3934/dcdsb.2017210

 Impact Factor: 

Metrics

  • PDF downloads (14)
  • HTML views (213)
  • Cited by (2)

Other articles
by authors

[Back to Top]