January  2018, 3: 4 doi: 10.1186/s41546-018-0030-2

Path-dependent backward stochastic Volterra integral equations with jumps, differentiability and duality principle

Institute of Mathematics, University of Gießen, Arndtsraße 2, 35392 Gießen, Germany

Received  May 30, 2017 Revised  April 23, 2018

Fund Project: The authors thank the editor and two anonymous referees for their helpful suggestions.

We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations (BSVIEs) with jumps, where pathdependence means the dependence of the free term and generator of a path of a càdlàg process. Furthermore, we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation (FSVIE) with jumps and a linear path-dependent BSVIE with jumps. As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.
Citation: Ludger Overbeck, Jasmin A. L. Röder. Path-dependent backward stochastic Volterra integral equations with jumps, differentiability and duality principle. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 4-. doi: 10.1186/s41546-018-0030-2
References:
[1]

Aman, A, N'Zi, M:Backward stochastic nonlinear Volterra integral equations with local Lipschitz drift. Probab. Math. Stat. 25, 105-127 (2005),

[2]

Ankirchner, S, Imkeller, P, Dos Reis, G:Classical and variational differentiability of BSDEs with quadratic growth. Electron. J. Probab. 12, 1418-1453 (2007),

[3]

Barles, G, Buckdahn, R, Pardoux, E:Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep. 60, 57-83 (1997),

[4]

Becherer, D:Bounded solutions to bsdes with jumps for utility optimization and indifference hedging. Ann. Appl. Probab. 16, 2027-2054 (2006),

[5]

Berger, M, Mizel, V:Volterra equations with itô integrals. J Integr. Equ. 2, 187-245 (1980),

[6]

Carmona, R:Indifference Pricing:Theory and Applications. Princeton University Press, Princeton (2008),

[7]

Cont, R, Fournié, DA:Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal. 259, 1043-1072 (2010),

[8]

Crépey, S:Financial Modeling, a backward stochastic differential equations perspective. Springer-Verlag Berlin Heidelberg (2013),

[9]

Delong, L:Backward stochastic differential equations with jumps and their actuarial and financial applications. Springer-Verlag London, London (2013),

[10]

Doléans-Dade, C:Quelques applications de la formule de changement de variables pour les semimartin-gales. Z Wahrscheinlichkeitstheorie verw Gebiete. 16, 181-194 (1970),

[11]

Duffie, D, Epstein, LG:Stochastic differential utility. Econometrica. 60(2), 353-394 (1992),

[12]

Dupire, B:Functional Itô calculus (2009). Bloomberg Portfolio Research Paper No. 2009-04-FRONTIERS. Available at SSRN:https://ssrn.com/abstract=1435551,

[13]

El Karoui, N, Peng, S, Quenez, M:Backward stochastic differential equations in finance. Math. Financ. 7, 1-71 (1997),

[14]

He, S, Wang, J, Yan, J:Semimartingale Theory and Stochastic Calculus. CRC Press, Boca Raton (1992),

[15]

Jacod, J, Shiryaev, AN:Limit theorems for stochastic processes, 2nd edn. Springer-Verlag Berlin Heidelberg, Berlin (2003),

[16]

Kromer, E, Overbeck, L:Representation of BSDE-based dynamic risk measures and dynamic capital allocations. Int. J. Theor. Appl. Financ. 17, 1-16 (2014),

[17]

Kromer, E, Overbeck, L:Differentiability of BSVIEs and dynamic capital allocations. Int. J. Theor. Appl. Financ. 20, 1-26 (2017),

[18]

Kromer, E, Overbeck, L, Röder, J:Feynman Kac for functional jump diffusions with an application to credit value adjustment. Stat. Probab. Lett. 105, 120-129 (2015),

[19]

Kromer, E, Overbeck, L, Röder, J:Path-dependent BSDEs with jumps and their connection to PPIDEs. Stochast. Dyn. 17, 1-37 (2017),

[20]

Lazrak, A, Quenez, M:A generalized stochastic differential utility. Math. Oper. Res. 28, 154-180 (2003),

[21]

Levental, S, Schroder, M, Sinha, S:A simple proof of functional Itô's lemma for semimartingales with an application. Stat. Probab. Lett. 83, 2019-2026 (2013),

[22]

Lin, J:Adapted solution of a backward stochastic nonlinear Volterra integral equation. Stoch. Anal. Appl. 20, 165-183 (2002),

[23]

Lu, W:Backward stochastic Volterra integral equations associated with a Lévy process and applications (2016). Available at arXiv:https://arxiv.org/abs/1106.6129,

[24]

Pardoux, E, Peng, S:Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55-61 (1990),

[25]

Pardoux, E, Protter, P:Stochastic Volterra equations with anticipating coefficients. Ann. Probab. 18, 1635-1655 (1990),

[26]

Peng, S, Wang, F:BSDE, path-dependent PDE and nonlinear Feynman-Kac formula. Sci. China Math. 59, 1-18 (2016),

[27]

Protter, P:Volterra equations driven by semimartingales. Ann. Probab. 13, 519-530 (1985),

[28]

Ren, Y:On solutions of backward stochastic volterra integral equations with jumps in hilbert spaces. J. Optim. Theory Appl. 144, 319-333 (2010),

[29]

Rong, S:On solutions of backward stochastic differential equations with jumps and applications. Stoch. Process. Appl. 66, 209-236 (1997),

[30]

Tang, S, Li, X:Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control. Optim. 32, 1447-1475 (1994). https://doi.org/101137/S0363012992233858,

[31]

Wang, F:BSDEs with jumps and path-dependent parabolic integro-differential equations. Chin. Ann. Math. Ser. B. 36, 625-644 (2015),

[32]

Wang, T, Yong, J:Comparison theorems for some backward stochastic Volterra integral equations. Stoch. Process. Appl. 125, 1756-1798 (2015),

[33]

Wang, Z, Zhang, X:Non-Lipschitz backward stochastic Volterra type equations with jumps. Stochastics and Dynamics. 7(4), 479-496 (2007),

[34]

Yong, J:Backward stochastic Volterra integral equations and some related problems. Stoch. Process. Appl. 116, 779-795 (2006),

[35]

Yong, J:Continuous-time dynamic risk measures by backward stochastic Volterra integral equations. Appl Anal. 186, 1429-1442 (2007),

[36]

Yong, J:Well-posedness and regularity of backward stochastic volterra integral equations. Probab. Theory Relat. Fields. 142, 21-77 (2008),

show all references

References:
[1]

Aman, A, N'Zi, M:Backward stochastic nonlinear Volterra integral equations with local Lipschitz drift. Probab. Math. Stat. 25, 105-127 (2005),

[2]

Ankirchner, S, Imkeller, P, Dos Reis, G:Classical and variational differentiability of BSDEs with quadratic growth. Electron. J. Probab. 12, 1418-1453 (2007),

[3]

Barles, G, Buckdahn, R, Pardoux, E:Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep. 60, 57-83 (1997),

[4]

Becherer, D:Bounded solutions to bsdes with jumps for utility optimization and indifference hedging. Ann. Appl. Probab. 16, 2027-2054 (2006),

[5]

Berger, M, Mizel, V:Volterra equations with itô integrals. J Integr. Equ. 2, 187-245 (1980),

[6]

Carmona, R:Indifference Pricing:Theory and Applications. Princeton University Press, Princeton (2008),

[7]

Cont, R, Fournié, DA:Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal. 259, 1043-1072 (2010),

[8]

Crépey, S:Financial Modeling, a backward stochastic differential equations perspective. Springer-Verlag Berlin Heidelberg (2013),

[9]

Delong, L:Backward stochastic differential equations with jumps and their actuarial and financial applications. Springer-Verlag London, London (2013),

[10]

Doléans-Dade, C:Quelques applications de la formule de changement de variables pour les semimartin-gales. Z Wahrscheinlichkeitstheorie verw Gebiete. 16, 181-194 (1970),

[11]

Duffie, D, Epstein, LG:Stochastic differential utility. Econometrica. 60(2), 353-394 (1992),

[12]

Dupire, B:Functional Itô calculus (2009). Bloomberg Portfolio Research Paper No. 2009-04-FRONTIERS. Available at SSRN:https://ssrn.com/abstract=1435551,

[13]

El Karoui, N, Peng, S, Quenez, M:Backward stochastic differential equations in finance. Math. Financ. 7, 1-71 (1997),

[14]

He, S, Wang, J, Yan, J:Semimartingale Theory and Stochastic Calculus. CRC Press, Boca Raton (1992),

[15]

Jacod, J, Shiryaev, AN:Limit theorems for stochastic processes, 2nd edn. Springer-Verlag Berlin Heidelberg, Berlin (2003),

[16]

Kromer, E, Overbeck, L:Representation of BSDE-based dynamic risk measures and dynamic capital allocations. Int. J. Theor. Appl. Financ. 17, 1-16 (2014),

[17]

Kromer, E, Overbeck, L:Differentiability of BSVIEs and dynamic capital allocations. Int. J. Theor. Appl. Financ. 20, 1-26 (2017),

[18]

Kromer, E, Overbeck, L, Röder, J:Feynman Kac for functional jump diffusions with an application to credit value adjustment. Stat. Probab. Lett. 105, 120-129 (2015),

[19]

Kromer, E, Overbeck, L, Röder, J:Path-dependent BSDEs with jumps and their connection to PPIDEs. Stochast. Dyn. 17, 1-37 (2017),

[20]

Lazrak, A, Quenez, M:A generalized stochastic differential utility. Math. Oper. Res. 28, 154-180 (2003),

[21]

Levental, S, Schroder, M, Sinha, S:A simple proof of functional Itô's lemma for semimartingales with an application. Stat. Probab. Lett. 83, 2019-2026 (2013),

[22]

Lin, J:Adapted solution of a backward stochastic nonlinear Volterra integral equation. Stoch. Anal. Appl. 20, 165-183 (2002),

[23]

Lu, W:Backward stochastic Volterra integral equations associated with a Lévy process and applications (2016). Available at arXiv:https://arxiv.org/abs/1106.6129,

[24]

Pardoux, E, Peng, S:Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55-61 (1990),

[25]

Pardoux, E, Protter, P:Stochastic Volterra equations with anticipating coefficients. Ann. Probab. 18, 1635-1655 (1990),

[26]

Peng, S, Wang, F:BSDE, path-dependent PDE and nonlinear Feynman-Kac formula. Sci. China Math. 59, 1-18 (2016),

[27]

Protter, P:Volterra equations driven by semimartingales. Ann. Probab. 13, 519-530 (1985),

[28]

Ren, Y:On solutions of backward stochastic volterra integral equations with jumps in hilbert spaces. J. Optim. Theory Appl. 144, 319-333 (2010),

[29]

Rong, S:On solutions of backward stochastic differential equations with jumps and applications. Stoch. Process. Appl. 66, 209-236 (1997),

[30]

Tang, S, Li, X:Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control. Optim. 32, 1447-1475 (1994). https://doi.org/101137/S0363012992233858,

[31]

Wang, F:BSDEs with jumps and path-dependent parabolic integro-differential equations. Chin. Ann. Math. Ser. B. 36, 625-644 (2015),

[32]

Wang, T, Yong, J:Comparison theorems for some backward stochastic Volterra integral equations. Stoch. Process. Appl. 125, 1756-1798 (2015),

[33]

Wang, Z, Zhang, X:Non-Lipschitz backward stochastic Volterra type equations with jumps. Stochastics and Dynamics. 7(4), 479-496 (2007),

[34]

Yong, J:Backward stochastic Volterra integral equations and some related problems. Stoch. Process. Appl. 116, 779-795 (2006),

[35]

Yong, J:Continuous-time dynamic risk measures by backward stochastic Volterra integral equations. Appl Anal. 186, 1429-1442 (2007),

[36]

Yong, J:Well-posedness and regularity of backward stochastic volterra integral equations. Probab. Theory Relat. Fields. 142, 21-77 (2008),

[1]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[2]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[3]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[4]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[5]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[6]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[7]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[8]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[12]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[13]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[14]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[15]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[16]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[17]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[18]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[19]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[20]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[Back to Top]