Advanced Search
Article Contents
Article Contents

Risk excess measures induced by hemi-metrics

Abstract Related Papers Cited by
  • The main aim of this paper is to introduce the notion of risk excess measure, to analyze its properties, and to describe some basic construction methods. To compare the risk excess of one distribution Q w.r.t. a given risk distribution P, we apply the concept of hemi-metrics on the space of probability measures. This view of risk comparison has a natural basis in the extension of orderings and hemi-metrics on the underlying space to the level of probability measures. Basic examples of these kind of extensions are induced by mass transportation and by function class induced orderings. Our view towards measuring risk excess adds to the usually considered method to compare risks of Q and P by the values ρ(Q), ρ(P) of a risk measure ρ. We argue that the difference ρ(Q)-ρ(P) neglects relevant aspects of the risk excess which are adequately described by the new notion of risk excess measure. We derive various concrete classes of risk excess measures and discuss corresponding ordering and measure extension properties.
    Mathematics Subject Classification: Primary;60B05;Secondary;62P05;91B30.


    \begin{equation} \\ \end{equation}
  • [1]

    Artzner, P, Delbaen, F, Eber, J-M, Heath, D:Coherent measures of risk. Math. Finance. 9(3), 203-228(1999). https://doi.org/10.1111/1467-9965.00068


    Berkes, I, Philipp, W:Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7(1), 29-54 (1979)


    Burgert, C, Rüschendorf, L:Consistent risk measures for portfolio vectors. Insurance Math. Econom. 38(2), 289-297 (2006). https://doi.org/10.1016/j.insmatheco.2005.08.008


    Cambanis, S, Simons, G, Stout, W:Inequalities for Ek(X, Y) when the marginals are fixed. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 36(4), 285-294 (1976). https://doi.org/10.1007/BF00532695


    Capéraà, P, Van Cutsem, B:Méthodes et Modèles en Statistique Non Paramétrique, p. 359. Les Presses de l'Université Laval, Sainte-Foy, QC; Dunod, Paris (1988). Exposé fondamental.[Basic exposition], With a foreword by Capéraà, Van Cutsem and Alain Baille


    Delbaen, F:Coherent risk measures on general probability spaces. Advances in Finance and Stochastics, pp. 1-37. Springer, Berlin (2002)


    Dudley, RM:Distances of probability measures and random variables. Ann. Math. Statist. 39, 1563-1572(1968). https://doi.org/10.1007/978-1-4419-5821-1_4


    Dudley, RM:Probabilities and Metrics, p. 126. Matematisk Institut, Aarhus Universitet, Aarhus (1976). Convergence of laws on metric spaces, with a view to statistical testing, Lecture Notes Series, No. 45


    Dudley, RM:Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74, p. 555. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/CBO9780511755347. Revised reprint of the 1989 original


    Faugeras, OP, Rüschendorf, L:Markov morphisms:a combined copula and mass transportation approach to multivariate quantiles. Math. Applicanda. 45, 3-45 (2017)


    Föllmer, H, Schied, A:Stochastic Finance. De Gruyter Studies in Mathematics, vol. 27, p. 422. Walter de Gruyter & Co., Berlin (2002). https://doi.org/10.1515/9783110198065. An introduction in discrete time


    Goubault-Larrecq, J:Non-Hausdorff Topology and Domain Theory. New Mathematical Monographs, vol. 22, p. 491. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139524438.[On the cover:Selected topics in point-set topology]


    Jouini, E, Meddeb, M, Touzi, N:Vector-valued coherent risk measures. Finance Stoch. 8(4), 531-552(2004). https://doi.org/10.1007/s00780-004-0127-6


    Kellerer, HG:Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete. 67(4), 399-432 (1984). https://doi.org/10.1007/BF00532047


    Koenker, R:Quantile Regression. Econometric Society Monographs, vol. 38, p. 349. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9780511754098


    Lehmann, EL:Some concepts of dependence. Ann. Math. Statist. 37, 1137-1153 (1966). https://doi.org/10.1214/aoms/1177699260


    Marshall, AW, Olkin, I, Arnold, BC:Inequalities:Theory of Majorization and Its Applications. 2nd edn. Springer Series in Statistics, p. 909. Springer (2011). https://doi.org/10.1007/978-0-387-68276-1


    Müller, A:Integral probability metrics and their generating classes of functions. Adv. in Appl. Probab. 29(2), 429-443 (1997)


    Nachbin, L:Topology and Order. Translated from the Portuguese by Lulu Bechtolsheim. Van Nostrand Mathematical Studies, No. 4, p. 122. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London(1965)


    Nelsen, RB:An Introduction to Copulas. 2nd edn. Springer Series in Statistics, p. 269. Springer, New York (2006)


    Rachev, ST, Rüschendorf, L.:Approximation of sums by compound Poisson distributions with respect to stop-loss distances. Adv. in Appl. Probab. 22(2), 350-374 (1990)


    Rachev, ST:Probability Metrics and the Stability of Stochastic Models. Wiley Series in Probability and Mathematical Statistics:Applied Probability and Statistics, p. 494. John Wiley & Sons, Ltd., Chichester (1991)


    Rachev, ST, Rüschendorf, L:Mass Transportation Problems. Vol. I. Probability and its Applications (New York), vol. 1, p. 508. Springer-Verlag, New York (1998). Theory


    Rachev, ST, Klebanov, LB, Stoyanov, SV, Fabozzi, FJ:The Methods of Distances in the Theory of Probability and Statistics, p. 619. Springer (2013). https://doi.org/10.1007/978-1-4614-4869-3


    Rosenberger, J, Gasko, M:Understanding robust and exploratory data analysis. Wiley Classics Library, p. 447. Wiley-Interscience, New York (2000). Chap. Comparing Location Estimators:Trimmed Means, Medians, and Trimean. Revised and updated reprint of the 1983 original


    Rüschendorf, L.:Monotonicity and unbiasedness of tests via a.s. constructions. Statistics. 17(2), 221-230(1986). https://doi.org/10.1080/02331888608801931


    Rüschendorf, L:Fréchet bounds and their applications. In:Dall'Aglio, G, Kotz, S, Salinetti, G (eds.) Advances in Probability Distributions with Given Marginals:Beyond the Copulas, pp. 151-187. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3466-8


    Rüschendorf, L.:On the distributional transform, Sklar's theorem, and the empirical copula process. J. Statist. Plann. Inference. 139(11), 3921-3927 (2009). https://doi.org/10.1016/j.jspi.2009.05.030


    Rüschendorf, L.:Mathematical Risk Analysis. Springer Series in Operations Research and Financial Engineering, p. 408. Springer (2013). https://doi.org/10.1007/978-3-642-33590-7. Dependence, risk bounds, optimal allocations and portfolios


    Sriperumbudur, BK, Fukumizu, K, Gretton, A, Schölkopf, B, Lanckriet, GRG:On the empirical estimation of integral probability metrics. Electron. J. Stat. 6, 1550-1599 (2012)


    Strassen, V:The existence of probability measures with given marginals. Ann. Math. Statist. 36, 423-439(1965). https://doi.org/10.1214/aoms/1177700153


    Tchen, AH:Inequalities for distributions with given marginals. Ann. Probab. 8(4), 814-827 (1980)


    Villani, C:Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58, p. 370. American Mathematical Society (2003). https://doi.org/10.1007/b12016


    Zolotarev, VM:Modern Theory of Summation of Random Variables. Modern Probability and Statistics, p. 412. VSP, Utrecht (1997). https://doi.org/10.1515/9783110936537

  • 加载中

Article Metrics

HTML views(525) PDF downloads(39) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint