[1]
|
Artzner, P, Delbaen, F, Eber, J-M, Heath, D:Coherent measures of risk. Math. Finance. 9(3), 203-228(1999). https://doi.org/10.1111/1467-9965.00068
|
[2]
|
Berkes, I, Philipp, W:Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7(1), 29-54 (1979)
|
[3]
|
Burgert, C, Rüschendorf, L:Consistent risk measures for portfolio vectors. Insurance Math. Econom. 38(2), 289-297 (2006). https://doi.org/10.1016/j.insmatheco.2005.08.008
|
[4]
|
Cambanis, S, Simons, G, Stout, W:Inequalities for Ek(X, Y) when the marginals are fixed. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 36(4), 285-294 (1976). https://doi.org/10.1007/BF00532695
|
[5]
|
Capéraà, P, Van Cutsem, B:Méthodes et Modèles en Statistique Non Paramétrique, p. 359. Les Presses de l'Université Laval, Sainte-Foy, QC; Dunod, Paris (1988). Exposé fondamental.[Basic exposition], With a foreword by Capéraà, Van Cutsem and Alain Baille
|
[6]
|
Delbaen, F:Coherent risk measures on general probability spaces. Advances in Finance and Stochastics, pp. 1-37. Springer, Berlin (2002)
|
[7]
|
Dudley, RM:Distances of probability measures and random variables. Ann. Math. Statist. 39, 1563-1572(1968). https://doi.org/10.1007/978-1-4419-5821-1_4
|
[8]
|
Dudley, RM:Probabilities and Metrics, p. 126. Matematisk Institut, Aarhus Universitet, Aarhus (1976). Convergence of laws on metric spaces, with a view to statistical testing, Lecture Notes Series, No. 45
|
[9]
|
Dudley, RM:Real Analysis and Probability. Cambridge Studies in Advanced Mathematics, vol. 74, p. 555. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/CBO9780511755347. Revised reprint of the 1989 original
|
[10]
|
Faugeras, OP, Rüschendorf, L:Markov morphisms:a combined copula and mass transportation approach to multivariate quantiles. Math. Applicanda. 45, 3-45 (2017)
|
[11]
|
Föllmer, H, Schied, A:Stochastic Finance. De Gruyter Studies in Mathematics, vol. 27, p. 422. Walter de Gruyter & Co., Berlin (2002). https://doi.org/10.1515/9783110198065. An introduction in discrete time
|
[12]
|
Goubault-Larrecq, J:Non-Hausdorff Topology and Domain Theory. New Mathematical Monographs, vol. 22, p. 491. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139524438.[On the cover:Selected topics in point-set topology]
|
[13]
|
Jouini, E, Meddeb, M, Touzi, N:Vector-valued coherent risk measures. Finance Stoch. 8(4), 531-552(2004). https://doi.org/10.1007/s00780-004-0127-6
|
[14]
|
Kellerer, HG:Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete. 67(4), 399-432 (1984). https://doi.org/10.1007/BF00532047
|
[15]
|
Koenker, R:Quantile Regression. Econometric Society Monographs, vol. 38, p. 349. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9780511754098
|
[16]
|
Lehmann, EL:Some concepts of dependence. Ann. Math. Statist. 37, 1137-1153 (1966). https://doi.org/10.1214/aoms/1177699260
|
[17]
|
Marshall, AW, Olkin, I, Arnold, BC:Inequalities:Theory of Majorization and Its Applications. 2nd edn. Springer Series in Statistics, p. 909. Springer (2011). https://doi.org/10.1007/978-0-387-68276-1
|
[18]
|
Müller, A:Integral probability metrics and their generating classes of functions. Adv. in Appl. Probab. 29(2), 429-443 (1997)
|
[19]
|
Nachbin, L:Topology and Order. Translated from the Portuguese by Lulu Bechtolsheim. Van Nostrand Mathematical Studies, No. 4, p. 122. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London(1965)
|
[20]
|
Nelsen, RB:An Introduction to Copulas. 2nd edn. Springer Series in Statistics, p. 269. Springer, New York (2006)
|
[21]
|
Rachev, ST, Rüschendorf, L.:Approximation of sums by compound Poisson distributions with respect to stop-loss distances. Adv. in Appl. Probab. 22(2), 350-374 (1990)
|
[22]
|
Rachev, ST:Probability Metrics and the Stability of Stochastic Models. Wiley Series in Probability and Mathematical Statistics:Applied Probability and Statistics, p. 494. John Wiley & Sons, Ltd., Chichester (1991)
|
[23]
|
Rachev, ST, Rüschendorf, L:Mass Transportation Problems. Vol. I. Probability and its Applications (New York), vol. 1, p. 508. Springer-Verlag, New York (1998). Theory
|
[24]
|
Rachev, ST, Klebanov, LB, Stoyanov, SV, Fabozzi, FJ:The Methods of Distances in the Theory of Probability and Statistics, p. 619. Springer (2013). https://doi.org/10.1007/978-1-4614-4869-3
|
[25]
|
Rosenberger, J, Gasko, M:Understanding robust and exploratory data analysis. Wiley Classics Library, p. 447. Wiley-Interscience, New York (2000). Chap. Comparing Location Estimators:Trimmed Means, Medians, and Trimean. Revised and updated reprint of the 1983 original
|
[26]
|
Rüschendorf, L.:Monotonicity and unbiasedness of tests via a.s. constructions. Statistics. 17(2), 221-230(1986). https://doi.org/10.1080/02331888608801931
|
[27]
|
Rüschendorf, L:Fréchet bounds and their applications. In:Dall'Aglio, G, Kotz, S, Salinetti, G (eds.) Advances in Probability Distributions with Given Marginals:Beyond the Copulas, pp. 151-187. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3466-8
|
[28]
|
Rüschendorf, L.:On the distributional transform, Sklar's theorem, and the empirical copula process. J. Statist. Plann. Inference. 139(11), 3921-3927 (2009). https://doi.org/10.1016/j.jspi.2009.05.030
|
[29]
|
Rüschendorf, L.:Mathematical Risk Analysis. Springer Series in Operations Research and Financial Engineering, p. 408. Springer (2013). https://doi.org/10.1007/978-3-642-33590-7. Dependence, risk bounds, optimal allocations and portfolios
|
[30]
|
Sriperumbudur, BK, Fukumizu, K, Gretton, A, Schölkopf, B, Lanckriet, GRG:On the empirical estimation of integral probability metrics. Electron. J. Stat. 6, 1550-1599 (2012)
|
[31]
|
Strassen, V:The existence of probability measures with given marginals. Ann. Math. Statist. 36, 423-439(1965). https://doi.org/10.1214/aoms/1177700153
|
[32]
|
Tchen, AH:Inequalities for distributions with given marginals. Ann. Probab. 8(4), 814-827 (1980)
|
[33]
|
Villani, C:Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58, p. 370. American Mathematical Society (2003). https://doi.org/10.1007/b12016
|
[34]
|
Zolotarev, VM:Modern Theory of Summation of Random Variables. Modern Probability and Statistics, p. 412. VSP, Utrecht (1997). https://doi.org/10.1515/9783110936537
|