• Previous Article
    Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs
  • PUQR Home
  • This Issue
  • Next Article
    The Cauchy problem of Backward Stochastic Super-Parabolic Equations with Quadratic Growth
January  2019, 4: 2 doi: 10.1186/s41546-019-0036-4

Piecewise constant martingales and lazy clocks

1. Université d'Évry, France;

2. Louvain Finance Center(LFIN) and Center for Operations Research and Econometrics(CORE), Voie du Roman Pays 34, 1348 Louvain-la-Neuve, Belgium

Received  March 2018 Revised  January 17, 2019

Conditional expectations (like, e.g., discounted prices in financial applications) are martingales under an appropriate filtration and probability measure. When the information flow arrives in a punctual way, a reasonable assumption is to suppose the latter to have piecewise constant sample paths between the random times of information updates. Providing a way to find and construct piecewise constant martingales evolving in a connected subset of $\mathbb{R}$ is the purpose of this paper. After a brief review of possible standard techniques, we propose a construction scheme based on the sampling of latent martingales $\tilde Z$ with lazy clocks θ. These θ are time-change processes staying in arrears of the true time but that can synchronize at random times to the real (calendar) clock. This specific choice makes the resulting time-changed process Zt = $\tilde Z$θt a martingale (called a lazy martingale) without any assumption on $\tilde Z$, and in most cases, the lazy clock θ is adapted to the filtration of the lazy martingale Z, so that sample paths of Z on [0, T ] only requires sample paths of (θ, $\tilde Z$) up to T. This would not be the case if the stochastic clock θ could be ahead of the real clock, as is typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (interval of) $\mathbb{R}$.
Citation: Christophe Profeta, Frédéric Vrins. Piecewise constant martingales and lazy clocks. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 2-. doi: 10.1186/s41546-019-0036-4
References:
[1]

Aksamit, A. and M. Jeanblanc. (2017). Enlargement of Filtrations with Finance in View, Springer, Switzerland.,

[2]

Altman, E., B. Brady, A. Resti, and A. Sironi. (2003). The link between defaults and recovery rates:theory, empirical evidence, and implications. Technical report, Stern School of Business.,

[3]

Amraoui, S., L. Cousot, S. Hitier, and J.-P. Laurent. (2012). Pricing CDOs with state-dependent stochastic recovery rates, Quant. Finan. 12, no. 8, 1219-1240.,

[4]

Andersen, L. and J. Sidenius. (2004). Extensions to the gaussian copula:random recovery and random factor loadings, J. Credit Risk 1, no. 1, 29-70.,

[5]

Baldi, P. (2017). Stochastic Calculus, Universitext. Springer, Switzerland.,

[6]

Bertoin, J. (1996). Lévy processes, volume 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge.,

[7]

Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. I. Representation results, SIAM J. Control. 13, no. 5, 999-1021.,

[8]

Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. II. Applications, SIAM. J. Control 13, no. 5, 1022-1061.,

[9]

Cont, R. and P. Tankov. (2004). Financial Modelling with Jump Processes, Chapman & Hall, USA.,

[10]

Dellacherie, C., B. Maisonneuve, and P.-A. Meyer. (1992). Probabilités et Potentiel-Processus de Markov, Hermann, France.,

[11]

Gaspar, R. and I. Slinko. (2008). On recovery and intensity's correlation-a new class of credit models, J. Credit Risk 4, no. 2, 1-33.,

[12]

Gradinaru, M., B. Roynette, P. Vallois, and M. Yor. (1999). Abel transform and integrals of Bessel local times, Ann. Inst. H. Poincaré Probab. Statist. 35, no. 4, 531-572.,

[13]

Gradshteyn, I.S. and I.M. Ryzhik. (2007). Table of integrals, series, and products, seventh edition, Elsevier/Academic Press, Amsterdam.,

[14]

Herdegen, M. and S. Herrmann. (2016). Single jump processes and strict local martingales, Stoch. Process. Appl. 126, no. 2, 337-359.,

[15]

Jacod, J. and A.V. Skorohod. (1994). Jumping filtrations and martingales with finite variation, Springer, Berlin.,

[16]

Jeanblanc, M. and F. Vrins. (2018). Conic martingales from stochastic integrals, Math. Financ. 28, no. 2, 516-535.,

[17]

Jeanblanc, M., M. Yor, and M. Chesney. (2007). Martingale Methods for Financial Markets, Springer Verlag, Berlin.,

[18]

Kahale, N. (2008). Analytic crossing probabilities for certain barriers by Brownian motion, Ann. Appl. Probab. 18, no. 4, 1424-1440.,

[19]

Karatzas, I. and S. Shreve. (2005). Brownian Motion and Stochastic Calculus, Springer, New York.,

[20]

Mansuy, R. and M. Yor. (2006). Random Times and Enlargement of Filtrations in a Brownian Setting. Lecture Notes in Mathematics, Springer, Berlin Heidelberg.,

[21]

Protter, P. (2005). Stochastic Integration and Differential Equations, Second edition, Springer, Berlin.,

[22]

Rainer, C. (1996). Projection d'une diffusion sur sa filtration lente, Springer, Berlin.,

[23]

Revuz, D. and M. Yor. (1999). Continuous martingales and Brownian motion, Springer-Verlag, New-York.,

[24]

Salminen, P. (1988). On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary, Adv. Appl. Probab. 20, no. 1, 411-426.,

[25]

Salminen, P. (1997). On last exit decompositions of linear diffusions, Studia. Sci. Math. Hungar. 33, no. 1-3, 251-262.,

[26]

Shreve, S.E. (2004). Stochastic Calculus for Finance vol. II-Continuous-time models, Springer, New York.,

[27]

Vrins, F. (2016). Characteristic function of time-inhomogeneous Lévy-driven Ornstein-Uhlenbeck pro-cesses, Stat. Probab. Lett. 116, 55-61.,

show all references

References:
[1]

Aksamit, A. and M. Jeanblanc. (2017). Enlargement of Filtrations with Finance in View, Springer, Switzerland.,

[2]

Altman, E., B. Brady, A. Resti, and A. Sironi. (2003). The link between defaults and recovery rates:theory, empirical evidence, and implications. Technical report, Stern School of Business.,

[3]

Amraoui, S., L. Cousot, S. Hitier, and J.-P. Laurent. (2012). Pricing CDOs with state-dependent stochastic recovery rates, Quant. Finan. 12, no. 8, 1219-1240.,

[4]

Andersen, L. and J. Sidenius. (2004). Extensions to the gaussian copula:random recovery and random factor loadings, J. Credit Risk 1, no. 1, 29-70.,

[5]

Baldi, P. (2017). Stochastic Calculus, Universitext. Springer, Switzerland.,

[6]

Bertoin, J. (1996). Lévy processes, volume 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge.,

[7]

Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. I. Representation results, SIAM J. Control. 13, no. 5, 999-1021.,

[8]

Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. II. Applications, SIAM. J. Control 13, no. 5, 1022-1061.,

[9]

Cont, R. and P. Tankov. (2004). Financial Modelling with Jump Processes, Chapman & Hall, USA.,

[10]

Dellacherie, C., B. Maisonneuve, and P.-A. Meyer. (1992). Probabilités et Potentiel-Processus de Markov, Hermann, France.,

[11]

Gaspar, R. and I. Slinko. (2008). On recovery and intensity's correlation-a new class of credit models, J. Credit Risk 4, no. 2, 1-33.,

[12]

Gradinaru, M., B. Roynette, P. Vallois, and M. Yor. (1999). Abel transform and integrals of Bessel local times, Ann. Inst. H. Poincaré Probab. Statist. 35, no. 4, 531-572.,

[13]

Gradshteyn, I.S. and I.M. Ryzhik. (2007). Table of integrals, series, and products, seventh edition, Elsevier/Academic Press, Amsterdam.,

[14]

Herdegen, M. and S. Herrmann. (2016). Single jump processes and strict local martingales, Stoch. Process. Appl. 126, no. 2, 337-359.,

[15]

Jacod, J. and A.V. Skorohod. (1994). Jumping filtrations and martingales with finite variation, Springer, Berlin.,

[16]

Jeanblanc, M. and F. Vrins. (2018). Conic martingales from stochastic integrals, Math. Financ. 28, no. 2, 516-535.,

[17]

Jeanblanc, M., M. Yor, and M. Chesney. (2007). Martingale Methods for Financial Markets, Springer Verlag, Berlin.,

[18]

Kahale, N. (2008). Analytic crossing probabilities for certain barriers by Brownian motion, Ann. Appl. Probab. 18, no. 4, 1424-1440.,

[19]

Karatzas, I. and S. Shreve. (2005). Brownian Motion and Stochastic Calculus, Springer, New York.,

[20]

Mansuy, R. and M. Yor. (2006). Random Times and Enlargement of Filtrations in a Brownian Setting. Lecture Notes in Mathematics, Springer, Berlin Heidelberg.,

[21]

Protter, P. (2005). Stochastic Integration and Differential Equations, Second edition, Springer, Berlin.,

[22]

Rainer, C. (1996). Projection d'une diffusion sur sa filtration lente, Springer, Berlin.,

[23]

Revuz, D. and M. Yor. (1999). Continuous martingales and Brownian motion, Springer-Verlag, New-York.,

[24]

Salminen, P. (1988). On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary, Adv. Appl. Probab. 20, no. 1, 411-426.,

[25]

Salminen, P. (1997). On last exit decompositions of linear diffusions, Studia. Sci. Math. Hungar. 33, no. 1-3, 251-262.,

[26]

Shreve, S.E. (2004). Stochastic Calculus for Finance vol. II-Continuous-time models, Springer, New York.,

[27]

Vrins, F. (2016). Characteristic function of time-inhomogeneous Lévy-driven Ornstein-Uhlenbeck pro-cesses, Stat. Probab. Lett. 116, 55-61.,

[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[3]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[10]

Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[11]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[12]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (33)
  • Cited by (0)

Other articles
by authors

[Back to Top]