• Previous Article
    Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs
  • PUQR Home
  • This Issue
  • Next Article
    The Cauchy problem of Backward Stochastic Super-Parabolic Equations with Quadratic Growth
January  2019, 4: 2 doi: 10.1186/s41546-019-0036-4

Piecewise constant martingales and lazy clocks

1. Université d'Évry, France;

2. Louvain Finance Center(LFIN) and Center for Operations Research and Econometrics(CORE), Voie du Roman Pays 34, 1348 Louvain-la-Neuve, Belgium

Received  March 2018 Revised  January 17, 2019 Published  February 2019

Conditional expectations (like, e.g., discounted prices in financial applications) are martingales under an appropriate filtration and probability measure. When the information flow arrives in a punctual way, a reasonable assumption is to suppose the latter to have piecewise constant sample paths between the random times of information updates. Providing a way to find and construct piecewise constant martingales evolving in a connected subset of $\mathbb{R}$ is the purpose of this paper. After a brief review of possible standard techniques, we propose a construction scheme based on the sampling of latent martingales $\tilde Z$ with lazy clocks θ. These θ are time-change processes staying in arrears of the true time but that can synchronize at random times to the real (calendar) clock. This specific choice makes the resulting time-changed process Zt = $\tilde Z$θt a martingale (called a lazy martingale) without any assumption on $\tilde Z$, and in most cases, the lazy clock θ is adapted to the filtration of the lazy martingale Z, so that sample paths of Z on [0, T ] only requires sample paths of (θ, $\tilde Z$) up to T. This would not be the case if the stochastic clock θ could be ahead of the real clock, as is typically the case using standard time-change processes. The proposed approach yields an easy way to construct analytically tractable lazy martingales evolving on (interval of) $\mathbb{R}$.
Citation: Christophe Profeta, Frédéric Vrins. Piecewise constant martingales and lazy clocks. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 2-. doi: 10.1186/s41546-019-0036-4
References:
[1]

Aksamit, A. and M. Jeanblanc. (2017). Enlargement of Filtrations with Finance in View, Springer, Switzerland. Google Scholar

[2]

Altman, E., B. Brady, A. Resti, and A. Sironi. (2003). The link between defaults and recovery rates:theory, empirical evidence, and implications. Technical report, Stern School of Business. Google Scholar

[3]

Amraoui, S., L. Cousot, S. Hitier, and J.-P. Laurent. (2012). Pricing CDOs with state-dependent stochastic recovery rates, Quant. Finan. 12, no. 8, 1219-1240. Google Scholar

[4]

Andersen, L. and J. Sidenius. (2004). Extensions to the gaussian copula:random recovery and random factor loadings, J. Credit Risk 1, no. 1, 29-70. Google Scholar

[5]

Baldi, P. (2017). Stochastic Calculus, Universitext. Springer, Switzerland. Google Scholar

[6]

Bertoin, J. (1996). Lévy processes, volume 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge. Google Scholar

[7]

Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. I. Representation results, SIAM J. Control. 13, no. 5, 999-1021. Google Scholar

[8]

Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. II. Applications, SIAM. J. Control 13, no. 5, 1022-1061. Google Scholar

[9]

Cont, R. and P. Tankov. (2004). Financial Modelling with Jump Processes, Chapman & Hall, USA. Google Scholar

[10]

Dellacherie, C., B. Maisonneuve, and P.-A. Meyer. (1992). Probabilités et Potentiel-Processus de Markov, Hermann, France. Google Scholar

[11]

Gaspar, R. and I. Slinko. (2008). On recovery and intensity's correlation-a new class of credit models, J. Credit Risk 4, no. 2, 1-33. Google Scholar

[12]

Gradinaru, M., B. Roynette, P. Vallois, and M. Yor. (1999). Abel transform and integrals of Bessel local times, Ann. Inst. H. Poincaré Probab. Statist. 35, no. 4, 531-572. Google Scholar

[13]

Gradshteyn, I.S. and I.M. Ryzhik. (2007). Table of integrals, series, and products, seventh edition, Elsevier/Academic Press, Amsterdam. Google Scholar

[14]

Herdegen, M. and S. Herrmann. (2016). Single jump processes and strict local martingales, Stoch. Process. Appl. 126, no. 2, 337-359. Google Scholar

[15]

Jacod, J. and A.V. Skorohod. (1994). Jumping filtrations and martingales with finite variation, Springer, Berlin. Google Scholar

[16]

Jeanblanc, M. and F. Vrins. (2018). Conic martingales from stochastic integrals, Math. Financ. 28, no. 2, 516-535. Google Scholar

[17]

Jeanblanc, M., M. Yor, and M. Chesney. (2007). Martingale Methods for Financial Markets, Springer Verlag, Berlin. Google Scholar

[18]

Kahale, N. (2008). Analytic crossing probabilities for certain barriers by Brownian motion, Ann. Appl. Probab. 18, no. 4, 1424-1440. Google Scholar

[19]

Karatzas, I. and S. Shreve. (2005). Brownian Motion and Stochastic Calculus, Springer, New York. Google Scholar

[20]

Mansuy, R. and M. Yor. (2006). Random Times and Enlargement of Filtrations in a Brownian Setting. Lecture Notes in Mathematics, Springer, Berlin Heidelberg. Google Scholar

[21]

Protter, P. (2005). Stochastic Integration and Differential Equations, Second edition, Springer, Berlin. Google Scholar

[22]

Rainer, C. (1996). Projection d'une diffusion sur sa filtration lente, Springer, Berlin. Google Scholar

[23]

Revuz, D. and M. Yor. (1999). Continuous martingales and Brownian motion, Springer-Verlag, New-York. Google Scholar

[24]

Salminen, P. (1988). On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary, Adv. Appl. Probab. 20, no. 1, 411-426. Google Scholar

[25]

Salminen, P. (1997). On last exit decompositions of linear diffusions, Studia. Sci. Math. Hungar. 33, no. 1-3, 251-262. Google Scholar

[26]

Shreve, S.E. (2004). Stochastic Calculus for Finance vol. II-Continuous-time models, Springer, New York. Google Scholar

[27]

Vrins, F. (2016). Characteristic function of time-inhomogeneous Lévy-driven Ornstein-Uhlenbeck pro-cesses, Stat. Probab. Lett. 116, 55-61. Google Scholar

show all references

References:
[1]

Aksamit, A. and M. Jeanblanc. (2017). Enlargement of Filtrations with Finance in View, Springer, Switzerland. Google Scholar

[2]

Altman, E., B. Brady, A. Resti, and A. Sironi. (2003). The link between defaults and recovery rates:theory, empirical evidence, and implications. Technical report, Stern School of Business. Google Scholar

[3]

Amraoui, S., L. Cousot, S. Hitier, and J.-P. Laurent. (2012). Pricing CDOs with state-dependent stochastic recovery rates, Quant. Finan. 12, no. 8, 1219-1240. Google Scholar

[4]

Andersen, L. and J. Sidenius. (2004). Extensions to the gaussian copula:random recovery and random factor loadings, J. Credit Risk 1, no. 1, 29-70. Google Scholar

[5]

Baldi, P. (2017). Stochastic Calculus, Universitext. Springer, Switzerland. Google Scholar

[6]

Bertoin, J. (1996). Lévy processes, volume 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge. Google Scholar

[7]

Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. I. Representation results, SIAM J. Control. 13, no. 5, 999-1021. Google Scholar

[8]

Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. II. Applications, SIAM. J. Control 13, no. 5, 1022-1061. Google Scholar

[9]

Cont, R. and P. Tankov. (2004). Financial Modelling with Jump Processes, Chapman & Hall, USA. Google Scholar

[10]

Dellacherie, C., B. Maisonneuve, and P.-A. Meyer. (1992). Probabilités et Potentiel-Processus de Markov, Hermann, France. Google Scholar

[11]

Gaspar, R. and I. Slinko. (2008). On recovery and intensity's correlation-a new class of credit models, J. Credit Risk 4, no. 2, 1-33. Google Scholar

[12]

Gradinaru, M., B. Roynette, P. Vallois, and M. Yor. (1999). Abel transform and integrals of Bessel local times, Ann. Inst. H. Poincaré Probab. Statist. 35, no. 4, 531-572. Google Scholar

[13]

Gradshteyn, I.S. and I.M. Ryzhik. (2007). Table of integrals, series, and products, seventh edition, Elsevier/Academic Press, Amsterdam. Google Scholar

[14]

Herdegen, M. and S. Herrmann. (2016). Single jump processes and strict local martingales, Stoch. Process. Appl. 126, no. 2, 337-359. Google Scholar

[15]

Jacod, J. and A.V. Skorohod. (1994). Jumping filtrations and martingales with finite variation, Springer, Berlin. Google Scholar

[16]

Jeanblanc, M. and F. Vrins. (2018). Conic martingales from stochastic integrals, Math. Financ. 28, no. 2, 516-535. Google Scholar

[17]

Jeanblanc, M., M. Yor, and M. Chesney. (2007). Martingale Methods for Financial Markets, Springer Verlag, Berlin. Google Scholar

[18]

Kahale, N. (2008). Analytic crossing probabilities for certain barriers by Brownian motion, Ann. Appl. Probab. 18, no. 4, 1424-1440. Google Scholar

[19]

Karatzas, I. and S. Shreve. (2005). Brownian Motion and Stochastic Calculus, Springer, New York. Google Scholar

[20]

Mansuy, R. and M. Yor. (2006). Random Times and Enlargement of Filtrations in a Brownian Setting. Lecture Notes in Mathematics, Springer, Berlin Heidelberg. Google Scholar

[21]

Protter, P. (2005). Stochastic Integration and Differential Equations, Second edition, Springer, Berlin. Google Scholar

[22]

Rainer, C. (1996). Projection d'une diffusion sur sa filtration lente, Springer, Berlin. Google Scholar

[23]

Revuz, D. and M. Yor. (1999). Continuous martingales and Brownian motion, Springer-Verlag, New-York. Google Scholar

[24]

Salminen, P. (1988). On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary, Adv. Appl. Probab. 20, no. 1, 411-426. Google Scholar

[25]

Salminen, P. (1997). On last exit decompositions of linear diffusions, Studia. Sci. Math. Hungar. 33, no. 1-3, 251-262. Google Scholar

[26]

Shreve, S.E. (2004). Stochastic Calculus for Finance vol. II-Continuous-time models, Springer, New York. Google Scholar

[27]

Vrins, F. (2016). Characteristic function of time-inhomogeneous Lévy-driven Ornstein-Uhlenbeck pro-cesses, Stat. Probab. Lett. 116, 55-61. Google Scholar

[1]

Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360

[2]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[3]

Ferenc Weisz. Dual spaces of mixed-norm martingale Hardy spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285

[4]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[5]

Tôn Việt Tạ. Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4507-4542. doi: 10.3934/dcds.2017193

[6]

T. Tachim Medjo. On weak martingale solutions to a stochastic Allen-Cahn-Navier-Stokes model with inertial effects. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021282

[7]

Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011

[8]

Qiuying Li, Lifang Huang, Jianshe Yu. Modulation of first-passage time for bursty gene expression via random signals. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1261-1277. doi: 10.3934/mbe.2017065

[9]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090

[10]

Jiao Song, Jiang-Lun Wu, Fangzhou Huang. First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4127-4142. doi: 10.3934/cpaa.2020184

[11]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[12]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[13]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[14]

Qingling Zhang, Guoliang Wang, Wanquan Liu, Yi Zhang. Stabilization of discrete-time Markovian jump systems with partially unknown transition probabilities. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1197-1211. doi: 10.3934/dcdsb.2011.16.1197

[15]

Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control & Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025

[16]

Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020156

[17]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105

[18]

Michael C. Fu, Bingqing Li, Rongwen Wu, Tianqi Zhang. Option pricing under a discrete-time Markov switching stochastic volatility with co-jump model. Frontiers of Mathematical Finance, 2022, 1 (1) : 137-160. doi: 10.3934/fmf.2021005

[19]

Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete & Continuous Dynamical Systems, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235

[20]

Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021032

 Impact Factor: 

Metrics

  • PDF downloads (20)
  • HTML views (237)
  • Cited by (0)

Other articles
by authors

[Back to Top]