-
Previous Article
Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs
- PUQR Home
- This Issue
-
Next Article
The Cauchy problem of Backward Stochastic Super-Parabolic Equations with Quadratic Growth
Piecewise constant martingales and lazy clocks
1. Université d'Évry, France; |
2. Louvain Finance Center(LFIN) and Center for Operations Research and Econometrics(CORE), Voie du Roman Pays 34, 1348 Louvain-la-Neuve, Belgium |
References:
[1] |
Aksamit, A. and M. Jeanblanc. (2017). Enlargement of Filtrations with Finance in View, Springer, Switzerland. Google Scholar |
[2] |
Altman, E., B. Brady, A. Resti, and A. Sironi. (2003). The link between defaults and recovery rates:theory, empirical evidence, and implications. Technical report, Stern School of Business. Google Scholar |
[3] |
Amraoui, S., L. Cousot, S. Hitier, and J.-P. Laurent. (2012). Pricing CDOs with state-dependent stochastic recovery rates, Quant. Finan. 12, no. 8, 1219-1240. Google Scholar |
[4] |
Andersen, L. and J. Sidenius. (2004). Extensions to the gaussian copula:random recovery and random factor loadings, J. Credit Risk 1, no. 1, 29-70. Google Scholar |
[5] |
Baldi, P. (2017). Stochastic Calculus, Universitext. Springer, Switzerland. Google Scholar |
[6] |
Bertoin, J. (1996). Lévy processes, volume 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge. Google Scholar |
[7] |
Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. I. Representation results, SIAM J. Control. 13, no. 5, 999-1021. Google Scholar |
[8] |
Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. II. Applications, SIAM. J. Control 13, no. 5, 1022-1061. Google Scholar |
[9] |
Cont, R. and P. Tankov. (2004). Financial Modelling with Jump Processes, Chapman & Hall, USA. Google Scholar |
[10] |
Dellacherie, C., B. Maisonneuve, and P.-A. Meyer. (1992). Probabilités et Potentiel-Processus de Markov, Hermann, France. Google Scholar |
[11] |
Gaspar, R. and I. Slinko. (2008). On recovery and intensity's correlation-a new class of credit models, J. Credit Risk 4, no. 2, 1-33. Google Scholar |
[12] |
Gradinaru, M., B. Roynette, P. Vallois, and M. Yor. (1999). Abel transform and integrals of Bessel local times, Ann. Inst. H. Poincaré Probab. Statist. 35, no. 4, 531-572. Google Scholar |
[13] |
Gradshteyn, I.S. and I.M. Ryzhik. (2007). Table of integrals, series, and products, seventh edition, Elsevier/Academic Press, Amsterdam. Google Scholar |
[14] |
Herdegen, M. and S. Herrmann. (2016). Single jump processes and strict local martingales, Stoch. Process. Appl. 126, no. 2, 337-359. Google Scholar |
[15] |
Jacod, J. and A.V. Skorohod. (1994). Jumping filtrations and martingales with finite variation, Springer, Berlin. Google Scholar |
[16] |
Jeanblanc, M. and F. Vrins. (2018). Conic martingales from stochastic integrals, Math. Financ. 28, no. 2, 516-535. Google Scholar |
[17] |
Jeanblanc, M., M. Yor, and M. Chesney. (2007). Martingale Methods for Financial Markets, Springer Verlag, Berlin. Google Scholar |
[18] |
Kahale, N. (2008). Analytic crossing probabilities for certain barriers by Brownian motion, Ann. Appl. Probab. 18, no. 4, 1424-1440. Google Scholar |
[19] |
Karatzas, I. and S. Shreve. (2005). Brownian Motion and Stochastic Calculus, Springer, New York. Google Scholar |
[20] |
Mansuy, R. and M. Yor. (2006). Random Times and Enlargement of Filtrations in a Brownian Setting. Lecture Notes in Mathematics, Springer, Berlin Heidelberg. Google Scholar |
[21] |
Protter, P. (2005). Stochastic Integration and Differential Equations, Second edition, Springer, Berlin. Google Scholar |
[22] |
Rainer, C. (1996). Projection d'une diffusion sur sa filtration lente, Springer, Berlin. Google Scholar |
[23] |
Revuz, D. and M. Yor. (1999). Continuous martingales and Brownian motion, Springer-Verlag, New-York. Google Scholar |
[24] |
Salminen, P. (1988). On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary, Adv. Appl. Probab. 20, no. 1, 411-426. Google Scholar |
[25] |
Salminen, P. (1997). On last exit decompositions of linear diffusions, Studia. Sci. Math. Hungar. 33, no. 1-3, 251-262. Google Scholar |
[26] |
Shreve, S.E. (2004). Stochastic Calculus for Finance vol. II-Continuous-time models, Springer, New York. Google Scholar |
[27] |
Vrins, F. (2016). Characteristic function of time-inhomogeneous Lévy-driven Ornstein-Uhlenbeck pro-cesses, Stat. Probab. Lett. 116, 55-61. Google Scholar |
show all references
References:
[1] |
Aksamit, A. and M. Jeanblanc. (2017). Enlargement of Filtrations with Finance in View, Springer, Switzerland. Google Scholar |
[2] |
Altman, E., B. Brady, A. Resti, and A. Sironi. (2003). The link between defaults and recovery rates:theory, empirical evidence, and implications. Technical report, Stern School of Business. Google Scholar |
[3] |
Amraoui, S., L. Cousot, S. Hitier, and J.-P. Laurent. (2012). Pricing CDOs with state-dependent stochastic recovery rates, Quant. Finan. 12, no. 8, 1219-1240. Google Scholar |
[4] |
Andersen, L. and J. Sidenius. (2004). Extensions to the gaussian copula:random recovery and random factor loadings, J. Credit Risk 1, no. 1, 29-70. Google Scholar |
[5] |
Baldi, P. (2017). Stochastic Calculus, Universitext. Springer, Switzerland. Google Scholar |
[6] |
Bertoin, J. (1996). Lévy processes, volume 121 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge. Google Scholar |
[7] |
Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. I. Representation results, SIAM J. Control. 13, no. 5, 999-1021. Google Scholar |
[8] |
Boel, R., P. Varaiya, and E. Wong. (1975). Martingales on jump processes. II. Applications, SIAM. J. Control 13, no. 5, 1022-1061. Google Scholar |
[9] |
Cont, R. and P. Tankov. (2004). Financial Modelling with Jump Processes, Chapman & Hall, USA. Google Scholar |
[10] |
Dellacherie, C., B. Maisonneuve, and P.-A. Meyer. (1992). Probabilités et Potentiel-Processus de Markov, Hermann, France. Google Scholar |
[11] |
Gaspar, R. and I. Slinko. (2008). On recovery and intensity's correlation-a new class of credit models, J. Credit Risk 4, no. 2, 1-33. Google Scholar |
[12] |
Gradinaru, M., B. Roynette, P. Vallois, and M. Yor. (1999). Abel transform and integrals of Bessel local times, Ann. Inst. H. Poincaré Probab. Statist. 35, no. 4, 531-572. Google Scholar |
[13] |
Gradshteyn, I.S. and I.M. Ryzhik. (2007). Table of integrals, series, and products, seventh edition, Elsevier/Academic Press, Amsterdam. Google Scholar |
[14] |
Herdegen, M. and S. Herrmann. (2016). Single jump processes and strict local martingales, Stoch. Process. Appl. 126, no. 2, 337-359. Google Scholar |
[15] |
Jacod, J. and A.V. Skorohod. (1994). Jumping filtrations and martingales with finite variation, Springer, Berlin. Google Scholar |
[16] |
Jeanblanc, M. and F. Vrins. (2018). Conic martingales from stochastic integrals, Math. Financ. 28, no. 2, 516-535. Google Scholar |
[17] |
Jeanblanc, M., M. Yor, and M. Chesney. (2007). Martingale Methods for Financial Markets, Springer Verlag, Berlin. Google Scholar |
[18] |
Kahale, N. (2008). Analytic crossing probabilities for certain barriers by Brownian motion, Ann. Appl. Probab. 18, no. 4, 1424-1440. Google Scholar |
[19] |
Karatzas, I. and S. Shreve. (2005). Brownian Motion and Stochastic Calculus, Springer, New York. Google Scholar |
[20] |
Mansuy, R. and M. Yor. (2006). Random Times and Enlargement of Filtrations in a Brownian Setting. Lecture Notes in Mathematics, Springer, Berlin Heidelberg. Google Scholar |
[21] |
Protter, P. (2005). Stochastic Integration and Differential Equations, Second edition, Springer, Berlin. Google Scholar |
[22] |
Rainer, C. (1996). Projection d'une diffusion sur sa filtration lente, Springer, Berlin. Google Scholar |
[23] |
Revuz, D. and M. Yor. (1999). Continuous martingales and Brownian motion, Springer-Verlag, New-York. Google Scholar |
[24] |
Salminen, P. (1988). On the first hitting time and the last exit time for a Brownian motion to/from a moving boundary, Adv. Appl. Probab. 20, no. 1, 411-426. Google Scholar |
[25] |
Salminen, P. (1997). On last exit decompositions of linear diffusions, Studia. Sci. Math. Hungar. 33, no. 1-3, 251-262. Google Scholar |
[26] |
Shreve, S.E. (2004). Stochastic Calculus for Finance vol. II-Continuous-time models, Springer, New York. Google Scholar |
[27] |
Vrins, F. (2016). Characteristic function of time-inhomogeneous Lévy-driven Ornstein-Uhlenbeck pro-cesses, Stat. Probab. Lett. 116, 55-61. Google Scholar |
[1] |
Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021048 |
[2] |
Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021078 |
[3] |
Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021039 |
[4] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[5] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003 |
[6] |
Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021010 |
[7] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007 |
[8] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[9] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[10] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[11] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[12] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[13] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[14] |
Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021082 |
[15] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 |
[16] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022 |
[17] |
Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039 |
[18] |
Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044 |
[19] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[20] |
Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021062 |
[Back to Top]