
Previous Article
Piecewise constant martingales and lazy clocks
 PUQR Home
 This Issue

Next Article
Law of large numbers and central limit theorem under nonlinear expectations
The Cauchy problem of Backward Stochastic SuperParabolic Equations with Quadratic Growth
1. School of Mathematical Sciences, Fudan University, Shanghai 200433, China; 
2. Department of Finance and Control Sciences, School of Mathematical Sciences, Fudan University, and Key Laboratory of Mathematics for Nonlinear Sciences(Fudan University), Ministry of Education, Shanghai 200433, China 
References:
[1] 
Bismut, J.M:Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384404(1973), 
[2] 
Bismut, J.M:Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control. Optim. 14, 419444 (1976), 
[3] 
Briand, P.H, Hu, Y:BSDE with quadratic growth and unbounded terminal value. Probab. Theory Relat. Fields. 136, 604618 (2006), 
[4] 
Briand, P.H, Hu, Y:Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Related Fields. 141, 543567 (2008), 
[5] 
Chen, S.:Introduction to Modern Partial Differential Equations. Science Press, Beijing (2005), 
[6] 
Du, K.:Backward Stochastic Differential Equations and Their Applications. Dissertation, School of Mathematical Sciences, Fudan University (2011), 
[7] 
Du, K, Chen, S:Backward stochastic partial differential equations with quadratic growth. J. Math. Anal. Appl. 419, 447468 (2012), 
[8] 
Du, K, Qiu, J, Tang, S:L^{p} theory for superparabolic backward stochastic partial differential equations in the whole space. Appl. Math. Optim. 65, 175219 (2012), 
[9] 
Du, K, Tang, S:Strong solution of backward stochastic partial differential equations in C^{2} domains. Probab. Theory Related Fields. 154, 255285 (2010), 
[10] 
Du, K, Zhang, Q:Semilinear degenerate backward stochastic partial differential equations and associated forward backward stochastic differential equations. Stoch. Proc. Appl. 123, 16161637 (2013), 
[11] 
El Karoui, N, Hamadène, S:BSDEs and risksensitive control, zerosum and nonzerosum game problems of stochastic functional differential equations. Stochast. Process. Appl. 107, 145169 (2003), 
[12] 
Frei, C, dos Reis, G:A financial market with interacting investors:does an equilibrium exist? Math. Finan. Econ. 4, 161182 (2011), 
[13] 
Fujita, H:On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations. Proc. Sympos. Pure Math. 18, 105113 (1969), 
[14] 
Hu, Y, Tang, S:Multidimensional backward stochastic differential equations of diagonally quadratic generators. Stoch. Proc. Appl. 126, 10661086 (2016), 
[15] 
Kobylanski, M:Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28, 558602 (2000), 
[16] 
Lepeltier, J.P, San Martin, J:Backward stochastic differential equations with continuous coefficients. Statist. Probab. Lett. 32, 425430 (1997), 
[17] 
Pardoux, E, Peng, S:Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 5561 (1990), 
[18] 
Qiu, J, Tang, S:Maximum principle for quasilinear backward stochastic partial differential equations. J. Funct. Anal. 262, 24362480 (2012), 
[19] 
Tang, S:General linear quadratic optimal stochastic control problems with random coefficients:linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42, 5375 (2003), 
[20] 
Tang, S:Dynamic programming for general linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 53, 10821106 (2015), 
[21] 
Tevzadze, R:Solvability of backward stochastic differential equations with quadratic growth. Stochastic. Process. Appl. 118, 503515 (2008), 
show all references
References:
[1] 
Bismut, J.M:Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384404(1973), 
[2] 
Bismut, J.M:Linear quadratic optimal stochastic control with random coefficients. SIAM J. Control. Optim. 14, 419444 (1976), 
[3] 
Briand, P.H, Hu, Y:BSDE with quadratic growth and unbounded terminal value. Probab. Theory Relat. Fields. 136, 604618 (2006), 
[4] 
Briand, P.H, Hu, Y:Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Related Fields. 141, 543567 (2008), 
[5] 
Chen, S.:Introduction to Modern Partial Differential Equations. Science Press, Beijing (2005), 
[6] 
Du, K.:Backward Stochastic Differential Equations and Their Applications. Dissertation, School of Mathematical Sciences, Fudan University (2011), 
[7] 
Du, K, Chen, S:Backward stochastic partial differential equations with quadratic growth. J. Math. Anal. Appl. 419, 447468 (2012), 
[8] 
Du, K, Qiu, J, Tang, S:L^{p} theory for superparabolic backward stochastic partial differential equations in the whole space. Appl. Math. Optim. 65, 175219 (2012), 
[9] 
Du, K, Tang, S:Strong solution of backward stochastic partial differential equations in C^{2} domains. Probab. Theory Related Fields. 154, 255285 (2010), 
[10] 
Du, K, Zhang, Q:Semilinear degenerate backward stochastic partial differential equations and associated forward backward stochastic differential equations. Stoch. Proc. Appl. 123, 16161637 (2013), 
[11] 
El Karoui, N, Hamadène, S:BSDEs and risksensitive control, zerosum and nonzerosum game problems of stochastic functional differential equations. Stochast. Process. Appl. 107, 145169 (2003), 
[12] 
Frei, C, dos Reis, G:A financial market with interacting investors:does an equilibrium exist? Math. Finan. Econ. 4, 161182 (2011), 
[13] 
Fujita, H:On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations. Proc. Sympos. Pure Math. 18, 105113 (1969), 
[14] 
Hu, Y, Tang, S:Multidimensional backward stochastic differential equations of diagonally quadratic generators. Stoch. Proc. Appl. 126, 10661086 (2016), 
[15] 
Kobylanski, M:Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28, 558602 (2000), 
[16] 
Lepeltier, J.P, San Martin, J:Backward stochastic differential equations with continuous coefficients. Statist. Probab. Lett. 32, 425430 (1997), 
[17] 
Pardoux, E, Peng, S:Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 5561 (1990), 
[18] 
Qiu, J, Tang, S:Maximum principle for quasilinear backward stochastic partial differential equations. J. Funct. Anal. 262, 24362480 (2012), 
[19] 
Tang, S:General linear quadratic optimal stochastic control problems with random coefficients:linear stochastic Hamilton systems and backward stochastic Riccati equations. SIAM J. Control Optim. 42, 5375 (2003), 
[20] 
Tang, S:Dynamic programming for general linear quadratic optimal stochastic control with random coefficients. SIAM J. Control Optim. 53, 10821106 (2015), 
[21] 
Tevzadze, R:Solvability of backward stochastic differential equations with quadratic growth. Stochastic. Process. Appl. 118, 503515 (2008), 
[1] 
Zhiming Guo, ZhiChun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a nonlocal differential equation with homogeneous Dirichlet boundary conditionA nonmonotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 18251838. doi: 10.3934/cpaa.2012.11.1825 
[2] 
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predatorprey equations. Discrete & Continuous Dynamical Systems  B, 2020, 25 (1) : 117139. doi: 10.3934/dcdsb.2019175 
[3] 
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617659. doi: 10.3934/nhm.2012.7.617 
[4] 
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437446. doi: 10.3934/proc.2013.2013.437 
[5] 
Shanjian Tang, Fu Zhang. Pathdependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems  A, 2015, 35 (11) : 55215553. doi: 10.3934/dcds.2015.35.5521 
[6] 
Xianming Liu, Guangyue Han. A WongZakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems  B, 2021, 26 (5) : 24992508. doi: 10.3934/dcdsb.2020192 
[7] 
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of pth mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems  B, 2020, 25 (3) : 11411158. doi: 10.3934/dcdsb.2019213 
[8] 
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 
[9] 
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101108. doi: 10.3934/proc.2009.2009.101 
[10] 
JeanFrançois Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141154. doi: 10.3934/amc.2010.4.141 
[11] 
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems  A, 2012, 32 (5) : 18811899. doi: 10.3934/dcds.2012.32.1881 
[12] 
M. Grasselli, V. Pata. Asymptotic behavior of a parabolichyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849881. doi: 10.3934/cpaa.2004.3.849 
[13] 
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 16711687. doi: 10.3934/dcdsb.2016017 
[14] 
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327345. doi: 10.3934/naco.2013.3.327 
[15] 
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533557. doi: 10.3934/cpaa.2009.8.533 
[16] 
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136145. 
[17] 
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasitoric differential inclusions. Discrete & Continuous Dynamical Systems  B, 2021, 26 (5) : 23432359. doi: 10.3934/dcdsb.2020181 
[18] 
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 19951997. doi: 10.3934/dcdsb.2013.18.1995 
[19] 
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multistep spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377387. doi: 10.3934/naco.2018024 
[20] 
HyeongOhk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with nonStandard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479491. doi: 10.3934/nhm.2018021 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]