January  2019, 4: 4 doi: 10.1186/s41546-019-0038-2

Law of large numbers and central limit theorem under nonlinear expectations

Institute of Mathematics, Shandong University, Jinan 250100, Shandong Province, China

Received  November 19, 2018 Revised  April 2019

The main achievement of this paper is the finding and proof of Central Limit Theorem (CLT, see Theorem 12) under the framework of sublinear expectation. Roughly speaking under some reasonable assumption, the random sequence $\left\{ {1/\sqrt n \left( {{X_1} + \cdots + {X_n}} \right)} \right\}_{i = 1}^\infty $ converges in law to a nonlinear normal distribution, called G-normal distribution, where $\left\{ {{X_i}} \right\}_{i = 1}^\infty $ is an i.i.d. sequence under the sublinear expectation. It's known that the framework of sublinear expectation provides a important role in situations that the probability measure itself has non-negligible uncertainties. Under such situation, this new CLT plays a similar role as the one of classical CLT. The classical CLT can be also directly obtained from this new CLT, since a linear expectation is a special case of sublinear expectations. A deep regularity estimate of 2nd order fully nonlinear parabolic PDE is applied to the proof of the CLT. This paper is originally exhibited in arXiv.(math.PR/0702358v1).
Citation: Shige Peng. Law of large numbers and central limit theorem under nonlinear expectations. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 4-. doi: 10.1186/s41546-019-0038-2
References:
[1]

Cabre, X. and Caffarelli, L.A. (1997). Fully nonlinear elliptic partial differential equations, American Mathematical Society. Google Scholar

[2]

Caffarelli, L.A. (1989). Interior estimates for fully nonlinear equations, Ann. of Math. 130, 189-213. Google Scholar

[3]

Peng, S. (2004). Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims, Acta Mathematicae Applicatae Sinica, Engl. Ser. 20, no. 2, 1-24. Google Scholar

[4]

Peng, S. (2005). Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. 26B, no. 2, 159-184. Google Scholar

[5]

Peng, S. (2007). G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Itô's type. in Stochastic Analysis and Applications, The Abel Symposium 2005, Abel Symposia2, Edit. Benth et. al., 541-567, Springer-Verlag. Google Scholar

[6]

Peng, S. (2008). Multi-Dimensional G-Brownian Motion and Related Stochastic Calculus under GExpectation. Stochastic Processes and their Applications 118(12), 2223-2253. Google Scholar

[7]

Wang, L. (1992). On the regularity of fully nonlinear parabolic equations:II, Comm. Pure Appl. Math. 45, 141-178. Google Scholar

show all references

References:
[1]

Cabre, X. and Caffarelli, L.A. (1997). Fully nonlinear elliptic partial differential equations, American Mathematical Society. Google Scholar

[2]

Caffarelli, L.A. (1989). Interior estimates for fully nonlinear equations, Ann. of Math. 130, 189-213. Google Scholar

[3]

Peng, S. (2004). Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims, Acta Mathematicae Applicatae Sinica, Engl. Ser. 20, no. 2, 1-24. Google Scholar

[4]

Peng, S. (2005). Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. 26B, no. 2, 159-184. Google Scholar

[5]

Peng, S. (2007). G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Itô's type. in Stochastic Analysis and Applications, The Abel Symposium 2005, Abel Symposia2, Edit. Benth et. al., 541-567, Springer-Verlag. Google Scholar

[6]

Peng, S. (2008). Multi-Dimensional G-Brownian Motion and Related Stochastic Calculus under GExpectation. Stochastic Processes and their Applications 118(12), 2223-2253. Google Scholar

[7]

Wang, L. (1992). On the regularity of fully nonlinear parabolic equations:II, Comm. Pure Appl. Math. 45, 141-178. Google Scholar

[1]

Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048

[2]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[3]

Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003

[4]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[5]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[6]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[7]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[8]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[9]

Ruchika Sehgal, Aparna Mehra. Worst-case analysis of Gini mean difference safety measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1613-1637. doi: 10.3934/jimo.2020037

[10]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[11]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[12]

Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007

[13]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

[14]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[15]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[16]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[17]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[18]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[19]

Muberra Allahverdi, Harun Aydilek, Asiye Aydilek, Ali Allahverdi. A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1973-1991. doi: 10.3934/jimo.2020054

[20]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[Back to Top]