-
Previous Article
Publisher Correction to: Probability, uncertainty and quantitative risk, volume 4
- PUQR Home
- This Issue
- Next Article
Nonlinear regression without i.i.d. assumption
UniDT, Shanghai, China |
References:
[1] |
Ben-Israel, A. and T.N.E. Greville. (2003). Generalized inverses:Theory and applications (2nd ed.), Springer, New York. Google Scholar |
[2] |
Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein. (2010). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Found. Trends Mach. Learn. 3, 1-122. Google Scholar |
[3] |
Boyd, S. and L. Vandenberghe. (2004). Convex Optimization, Cambridge University Press. https://doi.org/10.1017/cbo9780511804441.005. Google Scholar |
[4] |
Demyanov, V.F. and V.N. Malozemov. (1977). Introduction to Minimax, Wiley, New York. Google Scholar |
[5] |
Jin, H. and S. Peng. (2016). Optimal Unbiased Estimation for Maximal Distribution. https://arxiv.org/abs/1611.07994. Google Scholar |
[6] |
Kellogg, R.B. (1969). Nonlinear alternating direction algorithm, Math. Comp. 23, 23-38. Google Scholar |
[7] |
Kendall, M.G. and A. Stuart. (1968). The Advanced Theory of Statistics, Volume 3:Design and Analysis, and Time-Series (2nd ed.), Griffin, London. Google Scholar |
[8] |
Kiwiel, K.C. (1987). A Direct Method of Linearization for Continuous Minimax Problems, J. Optim. Theory Appl. 55, 271-287. Google Scholar |
[9] |
Klessig, R. and E. Polak. (1973). An Adaptive Precision Gradient Method for Optimal Control, SIAM J. Control 11, 80-93. Google Scholar |
[10] |
Legendre, A.-M. (1805). Nouvelles methodes pour la determination des orbites des cometes, F. Didot, Paris. Google Scholar |
[11] |
Lin, L., Y. Shi, X. Wang, and S. Yang. (2016). k-sample upper expectation linear regression-Modeling, identifiability, estimation and prediction, J. Stat. Plan. Infer. 170, 15-26. Google Scholar |
[12] |
Lin, L., P. Dong, Y. Song, and L. Zhu. (2017a). Upper Expectation Parametric Regression, Stat. Sin. 27, 1265-1280. Google Scholar |
[13] |
Lin, L., Y.X. Liu, and C. Lin. (2017b). Mini-max-risk and mini-mean-risk inferences for a partially piecewise regression, Statistics 51, 745-765. Google Scholar |
[14] |
Nocedal, J. and S.J. Wright. (2006). Numerical Optimization, Second Edition, Springer, New York. Google Scholar |
[15] |
Panin, V.M. (1981). Linearization Method for Continuous Min-max Problems, Kibernetika 2, 75-78. Google Scholar |
[16] |
Peng, S. (2005). Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. 26B, no. 2, 159-184. Google Scholar |
[17] |
Seber, G.A.F. and C.J. Wild. (1989). Nonlinear Regression, Wiley, New York. Google Scholar |
show all references
References:
[1] |
Ben-Israel, A. and T.N.E. Greville. (2003). Generalized inverses:Theory and applications (2nd ed.), Springer, New York. Google Scholar |
[2] |
Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein. (2010). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Found. Trends Mach. Learn. 3, 1-122. Google Scholar |
[3] |
Boyd, S. and L. Vandenberghe. (2004). Convex Optimization, Cambridge University Press. https://doi.org/10.1017/cbo9780511804441.005. Google Scholar |
[4] |
Demyanov, V.F. and V.N. Malozemov. (1977). Introduction to Minimax, Wiley, New York. Google Scholar |
[5] |
Jin, H. and S. Peng. (2016). Optimal Unbiased Estimation for Maximal Distribution. https://arxiv.org/abs/1611.07994. Google Scholar |
[6] |
Kellogg, R.B. (1969). Nonlinear alternating direction algorithm, Math. Comp. 23, 23-38. Google Scholar |
[7] |
Kendall, M.G. and A. Stuart. (1968). The Advanced Theory of Statistics, Volume 3:Design and Analysis, and Time-Series (2nd ed.), Griffin, London. Google Scholar |
[8] |
Kiwiel, K.C. (1987). A Direct Method of Linearization for Continuous Minimax Problems, J. Optim. Theory Appl. 55, 271-287. Google Scholar |
[9] |
Klessig, R. and E. Polak. (1973). An Adaptive Precision Gradient Method for Optimal Control, SIAM J. Control 11, 80-93. Google Scholar |
[10] |
Legendre, A.-M. (1805). Nouvelles methodes pour la determination des orbites des cometes, F. Didot, Paris. Google Scholar |
[11] |
Lin, L., Y. Shi, X. Wang, and S. Yang. (2016). k-sample upper expectation linear regression-Modeling, identifiability, estimation and prediction, J. Stat. Plan. Infer. 170, 15-26. Google Scholar |
[12] |
Lin, L., P. Dong, Y. Song, and L. Zhu. (2017a). Upper Expectation Parametric Regression, Stat. Sin. 27, 1265-1280. Google Scholar |
[13] |
Lin, L., Y.X. Liu, and C. Lin. (2017b). Mini-max-risk and mini-mean-risk inferences for a partially piecewise regression, Statistics 51, 745-765. Google Scholar |
[14] |
Nocedal, J. and S.J. Wright. (2006). Numerical Optimization, Second Edition, Springer, New York. Google Scholar |
[15] |
Panin, V.M. (1981). Linearization Method for Continuous Min-max Problems, Kibernetika 2, 75-78. Google Scholar |
[16] |
Peng, S. (2005). Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. 26B, no. 2, 159-184. Google Scholar |
[17] |
Seber, G.A.F. and C.J. Wild. (1989). Nonlinear Regression, Wiley, New York. Google Scholar |
[1] |
Lucian Coroianu, Danilo Costarelli, Sorin G. Gal, Gianluca Vinti. Approximation by multivariate max-product Kantorovich-type operators and learning rates of least-squares regularized regression. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4213-4225. doi: 10.3934/cpaa.2020189 |
[2] |
Shuhua Wang, Zhenlong Chen, Baohuai Sheng. Convergence of online pairwise regression learning with quadratic loss. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4023-4054. doi: 10.3934/cpaa.2020178 |
[3] |
Jiang Xie, Junfu Xu, Celine Nie, Qing Nie. Machine learning of swimming data via wisdom of crowd and regression analysis. Mathematical Biosciences & Engineering, 2017, 14 (2) : 511-527. doi: 10.3934/mbe.2017031 |
[4] |
Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15 |
[5] |
Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001 |
[6] |
Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial & Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057 |
[7] |
Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, Muzhou Hou. Solving higher order nonlinear ordinary differential equations with least squares support vector machines. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1481-1502. doi: 10.3934/jimo.2019012 |
[8] |
Zhuoyi Xu, Yong Xia, Deren Han. On box-constrained total least squares problem. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 439-449. doi: 10.3934/naco.2020043 |
[9] |
Xiao-Wen Chang, David Titley-Peloquin. An improved algorithm for generalized least squares estimation. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 451-461. doi: 10.3934/naco.2020044 |
[10] |
Mahdi Roozbeh, Saman Babaie–Kafaki, Zohre Aminifard. Two penalized mixed–integer nonlinear programming approaches to tackle multicollinearity and outliers effects in linear regression models. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020128 |
[11] |
Wei Xue, Wensheng Zhang, Gaohang Yu. Least absolute deviations learning of multiple tasks. Journal of Industrial & Management Optimization, 2018, 14 (2) : 719-729. doi: 10.3934/jimo.2017071 |
[12] |
Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems & Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133 |
[13] |
Ana Rita Nogueira, João Gama, Carlos Abreu Ferreira. Causal discovery in machine learning: Theories and applications. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021008 |
[14] |
Émilie Chouzenoux, Henri Gérard, Jean-Christophe Pesquet. General risk measures for robust machine learning. Foundations of Data Science, 2019, 1 (3) : 249-269. doi: 10.3934/fods.2019011 |
[15] |
Baohuai Sheng, Huanxiang Liu, Huimin Wang. Learning rates for the kernel regularized regression with a differentiable strongly convex loss. Communications on Pure & Applied Analysis, 2020, 19 (8) : 3973-4005. doi: 10.3934/cpaa.2020176 |
[16] |
Mohamed A. Tawhid, Ahmed F. Ali. A simplex grey wolf optimizer for solving integer programming and minimax problems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 301-323. doi: 10.3934/naco.2017020 |
[17] |
Xian-Jun Long, Jing Quan. Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 361-370. doi: 10.3934/naco.2011.1.361 |
[18] |
Xiao-Bing Li, Qi-Lin Wang, Zhi Lin. Optimality conditions and duality for minimax fractional programming problems with data uncertainty. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1133-1151. doi: 10.3934/jimo.2018089 |
[19] |
Suxiang He, Yunyun Nie. A class of nonlinear Lagrangian algorithms for minimax problems. Journal of Industrial & Management Optimization, 2013, 9 (1) : 75-97. doi: 10.3934/jimo.2013.9.75 |
[20] |
James Anderson, Antonis Papachristodoulou. Advances in computational Lyapunov analysis using sum-of-squares programming. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2361-2381. doi: 10.3934/dcdsb.2015.20.2361 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]