\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonlinear regression without i.i.d. assumption

Abstract Related Papers Cited by
  • In this paper, we consider a class of nonlinear regression problems without the assumption of being independent and identically distributed. We propose a correspondent mini-max problem for nonlinear regression and give a numerical algorithm. Such an algorithm can be applied in regression and machine learning problems, and yields better results than traditional least squares and machine learning methods.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Ben-Israel, A. and T.N.E. Greville. (2003). Generalized inverses:Theory and applications (2nd ed.), Springer, New York.

    [2]

    Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein. (2010). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Found. Trends Mach. Learn. 3, 1-122.

    [3]

    Boyd, S. and L. Vandenberghe. (2004). Convex Optimization, Cambridge University Press. https://doi.org/10.1017/cbo9780511804441.005.

    [4]

    Demyanov, V.F. and V.N. Malozemov. (1977). Introduction to Minimax, Wiley, New York.

    [5]

    Jin, H. and S. Peng. (2016). Optimal Unbiased Estimation for Maximal Distribution. https://arxiv.org/abs/1611.07994.

    [6]

    Kellogg, R.B. (1969). Nonlinear alternating direction algorithm, Math. Comp. 23, 23-38.

    [7]

    Kendall, M.G. and A. Stuart. (1968). The Advanced Theory of Statistics, Volume 3:Design and Analysis, and Time-Series (2nd ed.), Griffin, London.

    [8]

    Kiwiel, K.C. (1987). A Direct Method of Linearization for Continuous Minimax Problems, J. Optim. Theory Appl. 55, 271-287.

    [9]

    Klessig, R. and E. Polak. (1973). An Adaptive Precision Gradient Method for Optimal Control, SIAM J. Control 11, 80-93.

    [10]

    Legendre, A.-M. (1805). Nouvelles methodes pour la determination des orbites des cometes, F. Didot, Paris.

    [11]

    Lin, L., Y. Shi, X. Wang, and S. Yang. (2016). k-sample upper expectation linear regression-Modeling, identifiability, estimation and prediction, J. Stat. Plan. Infer. 170, 15-26.

    [12]

    Lin, L., P. Dong, Y. Song, and L. Zhu. (2017a). Upper Expectation Parametric Regression, Stat. Sin. 27, 1265-1280.

    [13]

    Lin, L., Y.X. Liu, and C. Lin. (2017b). Mini-max-risk and mini-mean-risk inferences for a partially piecewise regression, Statistics 51, 745-765.

    [14]

    Nocedal, J. and S.J. Wright. (2006). Numerical Optimization, Second Edition, Springer, New York.

    [15]

    Panin, V.M. (1981). Linearization Method for Continuous Min-max Problems, Kibernetika 2, 75-78.

    [16]

    Peng, S. (2005). Nonlinear expectations and nonlinear Markov chains, Chin. Ann. Math. 26B, no. 2, 159-184.

    [17]

    Seber, G.A.F. and C.J. Wild. (1989). Nonlinear Regression, Wiley, New York.

  • 加载中
SHARE

Article Metrics

HTML views(782) PDF downloads(53) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return