• Previous Article
    Limit behaviour of the minimal solution of a BSDE with singular terminal condition in the non Markovian setting
  • PUQR Home
  • This Issue
  • Next Article
    Upper risk bounds in internal factor models with constrained specification sets
January  2020, 5: 2 doi: 10.1186/s41546-020-00044-z

Moderate deviation for maximum likelihood estimators from single server queues

P. G. Department of Statistics, Sambalpur University, Odisha, India

Received  February 26, 2019 Published  March 2020

Consider a single server queueing model which is observed over a continuous time interval (0,T], where T is determined by a suitable stopping rule. Let θ be the unknown parameter for the arrival process and $\hat {\theta }_{T}$ be the maximum likelihood estimator of θ. The main goal of this paper is to obtain a moderate deviation result of the maximum likelihood estimator for the single server queueing model under certain regular conditions.
Citation: Saroja Kumar Singh. Moderate deviation for maximum likelihood estimators from single server queues. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 2-. doi: 10.1186/s41546-020-00044-z
References:
[1]

Acharya, S.K. (1999). On normal approximation for Maximum likelihood estimation from single server queues, Queueing Syst. 31, 207–216. Google Scholar

[2]

Acharya, S.K. and S.K. Singh. (2019). Asymptotic properties of maximum likelihood estimators from single server queues: A martingale approach, Commun. Stat. Theory Methods 48, 3549–3557. Google Scholar

[3]

Basawa, I.V. and N.U. Prabhu. (1981). Estimation in single server queues, Naval. Res. Logist. Quart. 28, 475–487. Google Scholar

[4]

Basawa, I.V. and N.U. Prabhu. (1988). Large sample inference from single server queues, Queueing Syst. 3, 289–304. Google Scholar

[5]

Billingsley, P. (1961). Statistical Inference for Markov Processes, The University of Chicago Press, Chicago. Google Scholar

[6]

Clarke, A.B. (1957). Maximum likelihood estimates in a simple queue, Ann. Math. Statist 28, 1036–1040. Google Scholar

[7]

Cox, D.R. (1965). Some problems of statistical analysis connected with congestion (W.L. Smith and W. B. Wilkinson, eds.), University of North Carolina Press, Chapel Hill. Google Scholar

[8]

Dembo, A. and O. Zeitouni. (1998). Large deviation Techniques and Applications, 2nd edn, Springer, New York. Google Scholar

[9]

Ellis, R.S. (1984). Large deviations for a general class of random vectors, Ann. Probab. 12, 1–12. Google Scholar

[10]

Gärtner, J. (1977). On large deviations from the invariant measure, Theory Probab. Appl. 22, 24–39. Google Scholar

[11]

Gao, F. (2001). Moderate deviations for the maximum likelihood estimator, Stat. Probab. Lett. 55, 345– 352. Google Scholar

[12]

Goyal, T.L. and C.M. Harris. (1972). Maximum likelihood estimation for queues with state dependent service, Sankhya Ser. A 34, 65–80. Google Scholar

[13]

Hall, P. and C.C. Heyde. (1980). Martingale Limit Theory and Applications, Academic Press, New York. Google Scholar

[14]

Miao, Y. and Y.-X. Chen. (2010). Note on moderate deviations for the maximum likelihood estimator, Acta Appl. Math. 110, 863–869. Google Scholar

[15]

Miao, Y. and Y. Wang. (2014). Moderate deviation principle for maximum likelihood estimator, Statistics 48, 766–777. Google Scholar

[16]

Singh, S.K. and S.K. Acharya. (2019). Equivalence between Bayes and the maximum likelihood estimator in M/M/1 queue, Commun. Stat.–Theory Methods 48, 4780–4793. Google Scholar

[17]

Wolff, R.W. (1965). Problems of statistical inference for birth and death queueing models, Oper. Res. 13, 243–357. Google Scholar

[18]

Xiao, Z. and L. Liu. (2006). Moderate deviations of maximum likelihood estimator for independent not identically distributed case, Stat. Probab. Lett. 76, 1056–1064. Google Scholar

show all references

References:
[1]

Acharya, S.K. (1999). On normal approximation for Maximum likelihood estimation from single server queues, Queueing Syst. 31, 207–216. Google Scholar

[2]

Acharya, S.K. and S.K. Singh. (2019). Asymptotic properties of maximum likelihood estimators from single server queues: A martingale approach, Commun. Stat. Theory Methods 48, 3549–3557. Google Scholar

[3]

Basawa, I.V. and N.U. Prabhu. (1981). Estimation in single server queues, Naval. Res. Logist. Quart. 28, 475–487. Google Scholar

[4]

Basawa, I.V. and N.U. Prabhu. (1988). Large sample inference from single server queues, Queueing Syst. 3, 289–304. Google Scholar

[5]

Billingsley, P. (1961). Statistical Inference for Markov Processes, The University of Chicago Press, Chicago. Google Scholar

[6]

Clarke, A.B. (1957). Maximum likelihood estimates in a simple queue, Ann. Math. Statist 28, 1036–1040. Google Scholar

[7]

Cox, D.R. (1965). Some problems of statistical analysis connected with congestion (W.L. Smith and W. B. Wilkinson, eds.), University of North Carolina Press, Chapel Hill. Google Scholar

[8]

Dembo, A. and O. Zeitouni. (1998). Large deviation Techniques and Applications, 2nd edn, Springer, New York. Google Scholar

[9]

Ellis, R.S. (1984). Large deviations for a general class of random vectors, Ann. Probab. 12, 1–12. Google Scholar

[10]

Gärtner, J. (1977). On large deviations from the invariant measure, Theory Probab. Appl. 22, 24–39. Google Scholar

[11]

Gao, F. (2001). Moderate deviations for the maximum likelihood estimator, Stat. Probab. Lett. 55, 345– 352. Google Scholar

[12]

Goyal, T.L. and C.M. Harris. (1972). Maximum likelihood estimation for queues with state dependent service, Sankhya Ser. A 34, 65–80. Google Scholar

[13]

Hall, P. and C.C. Heyde. (1980). Martingale Limit Theory and Applications, Academic Press, New York. Google Scholar

[14]

Miao, Y. and Y.-X. Chen. (2010). Note on moderate deviations for the maximum likelihood estimator, Acta Appl. Math. 110, 863–869. Google Scholar

[15]

Miao, Y. and Y. Wang. (2014). Moderate deviation principle for maximum likelihood estimator, Statistics 48, 766–777. Google Scholar

[16]

Singh, S.K. and S.K. Acharya. (2019). Equivalence between Bayes and the maximum likelihood estimator in M/M/1 queue, Commun. Stat.–Theory Methods 48, 4780–4793. Google Scholar

[17]

Wolff, R.W. (1965). Problems of statistical inference for birth and death queueing models, Oper. Res. 13, 243–357. Google Scholar

[18]

Xiao, Z. and L. Liu. (2006). Moderate deviations of maximum likelihood estimator for independent not identically distributed case, Stat. Probab. Lett. 76, 1056–1064. Google Scholar

[1]

Shan Gao, Jinting Wang. On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations. Journal of Industrial & Management Optimization, 2015, 11 (3) : 779-806. doi: 10.3934/jimo.2015.11.779

[2]

Tatsuaki Kimura, Hiroyuki Masuyama, Yutaka Takahashi. Light-tailed asymptotics of GI/G/1-type Markov chains. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2093-2146. doi: 10.3934/jimo.2017033

[3]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[4]

Sheng Zhu, Jinting Wang. Strategic behavior and optimal strategies in an M/G/1 queue with Bernoulli vacations. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1297-1322. doi: 10.3934/jimo.2018008

[5]

A. Guillin, R. Liptser. Examples of moderate deviation principle for diffusion processes. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 803-828. doi: 10.3934/dcdsb.2006.6.803

[6]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049

[7]

Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial & Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167

[8]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113

[9]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[10]

Yanqing Liu, Jiyuan Tao, Huan Zhang, Xianchao Xiu, Lingchen Kong. Fused LASSO penalized least absolute deviation estimator for high dimensional linear regression. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 97-117. doi: 10.3934/naco.2018006

[11]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[12]

Shaojun Lan, Yinghui Tang, Miaomiao Yu. System capacity optimization design and optimal threshold $N^{*}$ for a $GEO/G/1$ discrete-time queue with single server vacation and under the control of Min($N, V$)-policy. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1435-1464. doi: 10.3934/jimo.2016.12.1435

[13]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102

[14]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

[15]

Ricardo J. Alonso, Véronique Bagland, Bertrand Lods. Uniform estimates on the Fisher information for solutions to Boltzmann and Landau equations. Kinetic & Related Models, 2019, 12 (5) : 1163-1183. doi: 10.3934/krm.2019044

[16]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[17]

Fadia Bekkal-Brikci, Giovanna Chiorino, Khalid Boushaba. G1/S transition and cell population dynamics. Networks & Heterogeneous Media, 2009, 4 (1) : 67-90. doi: 10.3934/nhm.2009.4.67

[18]

Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895

[19]

Xin Guo, Qiang Fu, Yue Wang, Kenneth C. Land. A numerical method to compute Fisher information for a special case of heterogeneous negative binomial regression. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4179-4189. doi: 10.3934/cpaa.2020187

[20]

Francesca Biagini, Thilo Meyer-Brandis, Bernt Øksendal, Krzysztof Paczka. Optimal control with delayed information flow of systems driven by G-Brownian motion. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 8-. doi: 10.1186/s41546-018-0033-z

[Back to Top]