January  2020, 5: 3 doi: 10.1186/s41546-020-00045-y

Upper risk bounds in internal factor models with constrained specification sets

1. Department of Quantitative Finance, Albert-Ludwigs University of Freiburg, Platz der Alten Synagoge 1, KG II, 79098 Freiburg i. Br., Germany

2. Department of Mathematical Stochastics, Albert-Ludwigs University of Freiburg, Ernst-Zermelo-Straße 1, 79104 Freiburg, Germany

Received  April 17, 2019 Published  March 2020

For the class of (partially specified) internal risk factor models we establish strongly simplified supermodular ordering results in comparison to the case of general risk factor models. This allows us to derive meaningful and improved risk bounds for the joint portfolio in risk factor models with dependence information given by constrained specification sets for the copulas of the risk components and the systemic risk factor. The proof of our main comparison result is not standard. It is based on grid copula approximation of upper products of copulas and on the theory of mass transfers. An application to real market data shows considerable improvement over the standard method.
Citation: Jonathan Ansari, Ludger Rüschendorf. Upper risk bounds in internal factor models with constrained specification sets. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 3-. doi: 10.1186/s41546-020-00045-y
References:
[1]

Aas, K., C. Czado, A. Frigessi, and H. Bakken. (2009). Pair-copula constructions of multiple dependence, Insur. Math. Econ. 44, no. 2, 182–198.,

[2]

Ansari, J. (2019). Ordering risk bounds in partially specified factor models, University of Freiburg, Dissertation.,

[3]

Ansari, J. and L. Rüschendorf. (2016). Ordering results for risk bounds and cost-efficient payoffs in partially specified risk factor models, Methodol. Comput. Appl. Probab., 1–22.,

[4]

Ansari, J. and L. Rüschendorf. (2018). Ordering risk bounds in factor models, Depend. Model. 6.1, 259– 287.,

[5]

Bäuerle, N. and A. Müller. (2006). Stochastic orders and risk measures: consistency and bounds, Insur.Math. Econ. 38, no. 1, 132–148.,

[6]

Bernard, C. and S. Vanduffel. (2015). A new approach to assessing model risk in high dimensions, J. Bank.Financ. 58, 166–178.,

[7]

Bernard, C., L. Rüschendorf, and S. Vanduffel. (2017a). Value-at-Risk bounds with variance constraints, J. Risk. Insur. 84, no. 3, 923–959.,

[8]

Bernard, C., L. Rüschendorf, S. Vanduffel, and R. Wang. (2017b). Risk bounds for factor models, Financ.Stoch. 21, no. 3, 631–659.,

[9]

Bernard, C., M. Denuit, and S. Vanduffel. (2018). Measuring portfolio risk under partial dependence information, J. Risk Insur. 85, no. 3, 843–863.,

[10]

Bignozzi, V., G. Puccetti, and L Rüschendorf. (2015). Reducing model risk via positive and negative dependence assumptions, Insur. Math. Econ. 61, 17–26.,

[11]

Cornilly, D., L. Rüschendorf, and S. Vanduffel. (2018). Upper bounds for strictly concave distortion risk measures on moment spaces, Insur Math Econ. 82, 141–151.,

[12]

de Schepper, A. and B. Heijnen. (2010). How to estimate the Value at Risk under incomplete information, J. Comput. Appl. Math. 233, no. 9, 2213–2226.,

[13]

Demarta, S. and A.J. McNeil. (2005). The t copula and related copulas, Int. Stat. Rev. 73, no. 1, 111–129.,

[14]

Denuit, M., C. Genest, and E. Marceau. (1999). Stochastic bounds on sums of dependent risks, Insur. Math.Econ. 25, no. 1, 85–104.,

[15]

Embrechts, P. and G. Puccetti. (2006). Bounds for functions of dependent risks, Financ. Stoch. 10, no. 3, 341–352.,

[16]

Embrechts, P., G. Puccetti, and L. Rüschendorf. (2013). Model uncertainty and VaR aggregation, J. Banking Financ. 37, no. 8, 2750–2764.,

[17]

Embrechts, P., G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj. (2014). An academic response to basel 3.5, Risks 2, no. 1, 25–48.,

[18]

Embrechts, P., B. Wang, and R. Wang. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures, Financ. Stoch. 19, no. 4, 763–790.,

[19]

Föllmer, H. and A. Schied. (2010). Convex and coherent risk measures., Encycl. Quant. Financ., 355–363.,

[20]

Goovaerts, M.J., R. Kaas, and R.J.A. Laeven. (2011). Worst case risk measurement: back to the future?Insur. Math. Econ. 49, no. 3, 380–392.,

[21]

Hürlimann, W. (2002). Analytical bounds for two Value-at-Risk functionals, ASTIN Bull. 32, no. 2, 235–265.,

[22]

Hürlimann, W. (2008). Extremal moment methods and stochastic orders, Bol. Asoc. Mat. Venez. 15, no. 2, 153–301.,

[23]

Kaas, R. and M.J. Goovaerts. (1986). Best bounds for positive distributions with fixed moments, Insur.Math. Econ. 5, 87–95.,

[24]

McNeil, A.J., R. Frey, and P. Embrechts. (2015). Quantitative Risk Management. Concepts, Techniques and Tools., second edn, Princeton University Press, Princeton.,

[25]

Müller, A. (1997). Stop-loss order for portfolios of dependent risks, Insur. Math. Econ. 21, no. 3, 219–223.,

[26]

Müller, A. (2013). Duality theory and transfers for stochastic order relations. In: Stochastic orders in reliability and risk, Springer, New York.,

[27]

Müller, A. and M. Scarsini. (2001). Stochastic comparison of random vectors with a common copula, Math. Oper. Res. 26, no. 4, 723–740.,

[28]

Müller, A. and M. Scarsini. (2006). Stochastic order relations and lattices of probability measures, SIAM J. Optim. 16, no. 4, 1024–1043.,

[29]

Müller, A. and D. Stoyan. (2002). Comparison Methods for Stochastic Models and Risks, Wiley, Chichester.,

[30]

Nelsen, R.B. (2006). An introduction to copulas, 2nd ed, Springer, New York.,

[31]

Nelsen, R.B., J.J. Quesada-Molina, J.A. Rodríguez-Lallena, and M. Úbeda-Flores. (2001). Bounds on bivariate distribution functions with given margins and measures of association, Commun. Stat.Theory Methods 30, no. 6, 1155–1162.,

[32]

Puccetti, G. and L. Rüschendorf. (2012a). Bounds for joint portfolios of dependent risks, Stat. Risk. Model.Appl. Financ. Insur. 29, no. 2, 107–132.,

[33]

Puccetti, G. and L. Rüschendorf. (2012b). Computation of sharp bounds on the distribution of a function of dependent risks, J. Comput. Appl. Math 236, no. 7, 1833–1840.,

[34]

Puccetti, G. and L. Rüschendorf. (2013). Sharp bounds for sums of dependent risks, J. Appl. Probab. 50, no. 1, 42–53.,

[35]

Puccetti, G., L. Rüschendorf, D. Small, and S. Vanduffel. (2017). Reduction of Value-at-Risk bounds via independence and variance information, Scand. Actuar. J. 2017, no. 3, 245–266.,

[36]

Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process, J. Stat. Plann. Inference 139, no. 11, 3921–3927.,

[37]

Rüschendorf, L. (2013). Mathematical Risk Analysis, Springer, New York.,

[38]

Rüschendorf, L. (2017a). Improved Hoeffding–Fréchet bounds and applications to VaR estimates. In:Copulas and Dependence Models with Applications. Contributions in Honor of Roger B. Nelsen(M. Úbeda Flores, E. de Amo Artero, F. Durante, and J. Fernández Sánchez, eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-64221-5 12.,

[39]

Rüschendorf, L. (2017b). Risk bounds and partial dependence information. In: From Statistics to Mathematical Finance, Springer, Festschrift in honour of Winfried Stute, Cham.,

[40]

Rüschendorf, L. and J. Witting. (2017). VaR bounds in models with partial dependence information on subgroups, Depend Model 5, 59–74.,

[41]

Shaked, M. and J.G. Shantikumar. (2007). Stochastic Orders, Springer, New York.,

[42]

Tian, R. (2008). Moment problems with applications to Value-at-Risk and portfolio management, Georgia State University, Dissertation.,

show all references

References:
[1]

Aas, K., C. Czado, A. Frigessi, and H. Bakken. (2009). Pair-copula constructions of multiple dependence, Insur. Math. Econ. 44, no. 2, 182–198.,

[2]

Ansari, J. (2019). Ordering risk bounds in partially specified factor models, University of Freiburg, Dissertation.,

[3]

Ansari, J. and L. Rüschendorf. (2016). Ordering results for risk bounds and cost-efficient payoffs in partially specified risk factor models, Methodol. Comput. Appl. Probab., 1–22.,

[4]

Ansari, J. and L. Rüschendorf. (2018). Ordering risk bounds in factor models, Depend. Model. 6.1, 259– 287.,

[5]

Bäuerle, N. and A. Müller. (2006). Stochastic orders and risk measures: consistency and bounds, Insur.Math. Econ. 38, no. 1, 132–148.,

[6]

Bernard, C. and S. Vanduffel. (2015). A new approach to assessing model risk in high dimensions, J. Bank.Financ. 58, 166–178.,

[7]

Bernard, C., L. Rüschendorf, and S. Vanduffel. (2017a). Value-at-Risk bounds with variance constraints, J. Risk. Insur. 84, no. 3, 923–959.,

[8]

Bernard, C., L. Rüschendorf, S. Vanduffel, and R. Wang. (2017b). Risk bounds for factor models, Financ.Stoch. 21, no. 3, 631–659.,

[9]

Bernard, C., M. Denuit, and S. Vanduffel. (2018). Measuring portfolio risk under partial dependence information, J. Risk Insur. 85, no. 3, 843–863.,

[10]

Bignozzi, V., G. Puccetti, and L Rüschendorf. (2015). Reducing model risk via positive and negative dependence assumptions, Insur. Math. Econ. 61, 17–26.,

[11]

Cornilly, D., L. Rüschendorf, and S. Vanduffel. (2018). Upper bounds for strictly concave distortion risk measures on moment spaces, Insur Math Econ. 82, 141–151.,

[12]

de Schepper, A. and B. Heijnen. (2010). How to estimate the Value at Risk under incomplete information, J. Comput. Appl. Math. 233, no. 9, 2213–2226.,

[13]

Demarta, S. and A.J. McNeil. (2005). The t copula and related copulas, Int. Stat. Rev. 73, no. 1, 111–129.,

[14]

Denuit, M., C. Genest, and E. Marceau. (1999). Stochastic bounds on sums of dependent risks, Insur. Math.Econ. 25, no. 1, 85–104.,

[15]

Embrechts, P. and G. Puccetti. (2006). Bounds for functions of dependent risks, Financ. Stoch. 10, no. 3, 341–352.,

[16]

Embrechts, P., G. Puccetti, and L. Rüschendorf. (2013). Model uncertainty and VaR aggregation, J. Banking Financ. 37, no. 8, 2750–2764.,

[17]

Embrechts, P., G. Puccetti, L. Rüschendorf, R. Wang, and A. Beleraj. (2014). An academic response to basel 3.5, Risks 2, no. 1, 25–48.,

[18]

Embrechts, P., B. Wang, and R. Wang. (2015). Aggregation-robustness and model uncertainty of regulatory risk measures, Financ. Stoch. 19, no. 4, 763–790.,

[19]

Föllmer, H. and A. Schied. (2010). Convex and coherent risk measures., Encycl. Quant. Financ., 355–363.,

[20]

Goovaerts, M.J., R. Kaas, and R.J.A. Laeven. (2011). Worst case risk measurement: back to the future?Insur. Math. Econ. 49, no. 3, 380–392.,

[21]

Hürlimann, W. (2002). Analytical bounds for two Value-at-Risk functionals, ASTIN Bull. 32, no. 2, 235–265.,

[22]

Hürlimann, W. (2008). Extremal moment methods and stochastic orders, Bol. Asoc. Mat. Venez. 15, no. 2, 153–301.,

[23]

Kaas, R. and M.J. Goovaerts. (1986). Best bounds for positive distributions with fixed moments, Insur.Math. Econ. 5, 87–95.,

[24]

McNeil, A.J., R. Frey, and P. Embrechts. (2015). Quantitative Risk Management. Concepts, Techniques and Tools., second edn, Princeton University Press, Princeton.,

[25]

Müller, A. (1997). Stop-loss order for portfolios of dependent risks, Insur. Math. Econ. 21, no. 3, 219–223.,

[26]

Müller, A. (2013). Duality theory and transfers for stochastic order relations. In: Stochastic orders in reliability and risk, Springer, New York.,

[27]

Müller, A. and M. Scarsini. (2001). Stochastic comparison of random vectors with a common copula, Math. Oper. Res. 26, no. 4, 723–740.,

[28]

Müller, A. and M. Scarsini. (2006). Stochastic order relations and lattices of probability measures, SIAM J. Optim. 16, no. 4, 1024–1043.,

[29]

Müller, A. and D. Stoyan. (2002). Comparison Methods for Stochastic Models and Risks, Wiley, Chichester.,

[30]

Nelsen, R.B. (2006). An introduction to copulas, 2nd ed, Springer, New York.,

[31]

Nelsen, R.B., J.J. Quesada-Molina, J.A. Rodríguez-Lallena, and M. Úbeda-Flores. (2001). Bounds on bivariate distribution functions with given margins and measures of association, Commun. Stat.Theory Methods 30, no. 6, 1155–1162.,

[32]

Puccetti, G. and L. Rüschendorf. (2012a). Bounds for joint portfolios of dependent risks, Stat. Risk. Model.Appl. Financ. Insur. 29, no. 2, 107–132.,

[33]

Puccetti, G. and L. Rüschendorf. (2012b). Computation of sharp bounds on the distribution of a function of dependent risks, J. Comput. Appl. Math 236, no. 7, 1833–1840.,

[34]

Puccetti, G. and L. Rüschendorf. (2013). Sharp bounds for sums of dependent risks, J. Appl. Probab. 50, no. 1, 42–53.,

[35]

Puccetti, G., L. Rüschendorf, D. Small, and S. Vanduffel. (2017). Reduction of Value-at-Risk bounds via independence and variance information, Scand. Actuar. J. 2017, no. 3, 245–266.,

[36]

Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process, J. Stat. Plann. Inference 139, no. 11, 3921–3927.,

[37]

Rüschendorf, L. (2013). Mathematical Risk Analysis, Springer, New York.,

[38]

Rüschendorf, L. (2017a). Improved Hoeffding–Fréchet bounds and applications to VaR estimates. In:Copulas and Dependence Models with Applications. Contributions in Honor of Roger B. Nelsen(M. Úbeda Flores, E. de Amo Artero, F. Durante, and J. Fernández Sánchez, eds.), Springer, Cham. https://doi.org/10.1007/978-3-319-64221-5 12.,

[39]

Rüschendorf, L. (2017b). Risk bounds and partial dependence information. In: From Statistics to Mathematical Finance, Springer, Festschrift in honour of Winfried Stute, Cham.,

[40]

Rüschendorf, L. and J. Witting. (2017). VaR bounds in models with partial dependence information on subgroups, Depend Model 5, 59–74.,

[41]

Shaked, M. and J.G. Shantikumar. (2007). Stochastic Orders, Springer, New York.,

[42]

Tian, R. (2008). Moment problems with applications to Value-at-Risk and portfolio management, Georgia State University, Dissertation.,

[1]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[2]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[3]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[4]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[5]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[6]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[10]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[14]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[15]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[16]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[17]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[18]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[19]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[20]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

 Impact Factor: 

Metrics

  • PDF downloads (5)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]